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Among all 3-dimensional manifolds, the 3-sphere S3 = {v ∈ R4 : ‖v‖ = 1} is perhaps the most
emblematic example. Although conceptually simple, the 3-sphere – just like most manifolds – cannot
be embedded in R3. In other words, the 3-sphere is not drawable. This is a problem for us, mortals
condemned to a 3-dimensional (local) existence who seek to understand S3’s geometric structure
through our visual intuition.

That said, the mathematical community at large has been developing different ways to visualize
the 3-spheres since the mid 19th centuries. Among these, the study of it’s Lie group structure
stands out. Although not that visual, this approach is very practical and it allows us extract a lot
of information about the differentiable structure of S3 and that of many of it’s quotients. But wait…
S3 is a group? Why?

The central ingredient of the following discussion is that of the quaternion numbers H = {a +
bi + cj + dk : a, b, c, d ∈ R} – where i2 = j2 = k2 = ijk = −1. The quaternions are hypercomplex
numbers – an “extension” of the complex plane – of course, but what’s reinvent to us is that
they form a 4-dimensional normed division algebra over R. In particular, given q, p ∈ H with
|q| = |p| = 1, |qp| = |q| · |p| = 1. In other words, the set of unitary quaternion numbers is closed
under multiplication.

Since H is a division algebra, the set of unitary quaternions is a group. Moreover, it’s easy to show
that quaternion multiplication is polynomial – i.e. it is a polynomial function in each coordinate.
This implies that the unitary quaternions are a Lie group. Now by identifying R4 with H we arrive
at

S3 = {q ∈ H : |q| = 1}

and we finally conclude that S3 is a Lie group under the quaternion product.
Thoughtful readers may have already realized that this is precisely the way we endow the circle

S1 = {z ∈ C : |z| = 1} with it’s group structure. Indeed, the same exact argument works for
dimensions 0 and 1 too – simply replace H with R and C respectively. However, this argument does
not work for the 7-sphere, since the octonion numbers – the 8-dimensional analogue of H – do not
form an associative algebra. This poses an interesting question: does this argument work for other
dimensions?

Does it work for… let’s say… the 2-dimensional sphere S2? Unfortunately, no, not really. In
order for our argument to work for S2 we would have to find a 3-dimensional normed (associative)
division algebra over R. We will discuss this issue at the end of these notes, but for now it suffices
to note that so such algebra exists. This hints at the fact that Sn being a group is a somewhat
special characteristic of n = 0, 1, 3, but perhaps S2 admits some other mysterious group structure.
This is not the case, however, since S2 is not parallelizable – and every Lie group is a parallelizable
manifold.

Another interesting question one might ask is: what’s the Lie algebra of S3? Well, by identifying
a quaternion q = a+ bi+ cj + dk with it’s matrix representation

q =

(
a+ bi c+ di
−c+ di a− bi

)
∈ M2(C)

we get a morphism of Lie groups Φ : H −→ M2(C) – see theorem 2.1.3 of [2]. Notice that q is a
unitary matrix – i.e. q ∈ U(2). Moreover, detq = a2 + b2 + c2 + d2 = |q|2 = 1.
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This implies Φ(S3) is precisely SU(2). Now the kernel of the restriction Φ �S3 is the set of q’s
such that

a+ bi = a− bi = 1 (1)

c+ di = −c+ di = 0 (2)

In other words, kerΦ �S3= {1} and so S3 ∼= SU(2) as Lie groups. Hence the Lie algebra of S3 is

su2 = {M ∈ M2(C) : M = −M∗,TrM = 0}

and, given that S3 is simply connected, all other Lie groups with coinciding Lie algebra are quotients
of S3 by discrete subgroups of it’s center – see the 8-th lecture of [5]. Such subgroups and their
corresponding quotients of S3 will be center of the following discussion. However, as interesting as
they may sound, this subgroups are quite scarce.

To see this, simply notice that the center of H is R, from which follows that the center of S3 is
R∩S3 = {1,−1} – it has precisely one non-trivial subgroup, which is, of course, itself. Nevertheless,
the quotient S3/{1,−1} is quite an interesting example. Let’s dive into it!

1 The Quotient of S3 by it’s Center
We’ll start this section by asking a simple question: who is the quotient of S3 by it’s center? More
precisely: what’s it’s geometric structure? Well, the action of 1 in the sphere is trivial, so we don’t
need to take it into account. All it’s left to analyze is the action of −1, which isn’t that complicated
either: two elements p and q of S3 are in the same orbit under this action if p = −q. In other words,
we’re identifying diametrically opposed points of the 3-sphere.

Hence the quotient S3/{1,−1} can be thought of the “upper semi-3-sphere”. The concepts of “up”,
“down”, “left” and “right” aren’t precise in a 4-dimensional space, but the “upper semi-3-sphere”
could be defined as… let’s say… the set o unitary quaternions with non-negative real coefficients. One
should point out that this isn’t quite the case, since we’re also identifying diametrically opposed pure
quaternions – quaternions q with Re q = 0 – but we’ll leave such nuances for later.

Sharp-eyed observers may have realized that such space coincide with the quotient of the space
of non-zero 4-dimensional vectors with real coefficients by the relation that identifies colinear points
– which is to say, two vectors are considered the same if they are multiples of one-another – known
as the projective space RP3. Indeed, this is clearly the case: every line through the origin in R4 will
intersect the 3-sphere in precisely two diametrically opposed points, so by choosing the point that
lies in the “upper semi-3-sphere” we arrive at the desired conclusion.

This implies RP3 ∼= S3/{1,−1} – at least as sets – but it also poses some interesting questions: who
is RP3? Why is it called projective? Why would anyone in God’s green earth study such a smilingly
arbitrary space? This are the questions we’ll attempt to answer in this section, and we’ll start by
last of them. The short answer is that no one actually studies such a quotient: this is simply a
construction of the abstract space RP3, which is itself the thing that people study.

In general, the n-dimensional projective space RPn naturally comes up when we search for a
somewhat Euclidean space with the geometric property that every pair of distinct straight lines
intersect at a single point. In other words, RPn is an “extension” of Rn such that each pair of lines
in Rn can be naturally extended to a pair of things – subsets – with singleton intersection. This
characterization is, in fact, the answer to our second question: RPn is called the projective because
the image of two distinct 3-dimensional lines under a 2-dimensional projection always intersect at a
single point – including parallel ones – as shown in figure 1.

This is quite an interesting characterization, but it is not at all clear that such a space exists.
We’ve already said that the quotient of the space of non-zero n-dimension vectors by the relation
that identifies … is a construction of RPn, but how do we get from “two lines always have a single
intersection point” to this? We’ll start out by analyzing the case of the projective plane RP2, mainly
because we can draw 2-dimensional stuff. Notice, however, that all of the arguments used in following
discussion work for arbitrary dimensions.
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Figure 1: The Cologne Hauptbahnhof train station as seen from the central platform of the main
hall. The projection of the lines at the boundary of the platform appear to intersect at a vanishing
point in the horizon, even though they are parallel. Credit: Martin Falbisonel

If two lines in R2 are concurrent, then, by definition, they already intersect at some (unique)
point. However, if two distinct lines are parallel to one another, no such an intersection point exists.
Nevertheless, we could add this point – i.e. for each line that passes through the origin in R2 we add
a point, which should could correspond to the intersection of this line with all other lines parallel to
it.

Hence RP2 can be informally thought-of as R2 ∪ {points at infinity} – where each “point at
infinity” corresponds to a line through the origin. One way to turn our intuition into something
practical is by considering the stereographic projection, which homeomorphically identifies the plane
R2 with the upper 2-sphere S2+:

Figure 2: A graphical depiction of the stereographic projection: we map each point in the upper
half of the sphere to the projection of this point in the tangent plane at the north pole by drawing
a line between this point and the center of the sphere and then taking the intersection of this line
with the plane.

Notice that the image of p ∈ S2+ under the stereographic projection “explodes to infinity” as p
approaches the boundary of S2+. In fact, by taking spherical coordinates

S2+ = {(cos θ cosϕ, sin θ cosϕ, sinϕ) : 0 6 θ < π, 0 < ϕ < π},

fixing θ and letting ϕ vary we can see that the image of the corresponding curve is the line γ(t) =
t(cos θ, sin θ) in R2 – where t = 1

tanϕ . This can be shown explicitly by computing the formula
of the stereographic projection in spherical coordinates, but we hope that figure 3 is sufficiently
convincing. Moreover, the inverse image of lines that are parallel to γ(t) in R2 are half (great)
circles in S2+ which starts at (cos θ, sin θ, 0) and ends at (− cos θ,− sin θ, 0), so that their intersection
with γ(t) has precisely two (diametrically opposed) points, both lying in the boundary of S2+.
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γ(t) γ(t) + x0

Figure 3: A graphical depiction of the projection of great circles in the plane: circles that pass
trough the north pole are mapped to lines trough the origin, while other circles whose intersection
with the equator match those of a given circle that passes trough the equator are mapped to parallel
lines

In other words, by taking RP2 = S2+ ∪ ∂S2+ and identifying lines in R2 with half (great) circles in
S2+ we arrive at our desired construction – where the “points at infinity” are realized as the points
in ∂S2+. Although a bit cumbersome, this comes prepackaged with a topology which pretty much
screams into the wind “I am the projective plane! I am an extension of R2 where all lines have a
single intersection point!”.

There’s a small catch though: our previous derivations showed us each pair of parallel lines in
RP2 intersect at two diametrically opposed points in the boundary of S2+, and we only want them
to intersect at a single point. This is because by walking towards ∂S2+ in γ(t) at both ends we’re
essentially approaching the same point at infinity from two different directions. To fix this, we can
simply identify diametrically opposed points in ∂S2+.

In fact, we can simply identify all diametrically opposed points in S2 – or even identify colinear
points in the entirety of R3r{0}, arriving at the usual construction of RP2. As previously mentioned,
nothing we’ve said so far is specific to RP2. In particular, identifying diametrically opposed points
in S3 is precisely the same as taking the quotient S3/{1,−1}. This hopefully establishes that RP3 ∼=
S3/{1,−1} not only because they coincide as sets, but because their geometry is the same.

2 Other Quotients
Even though subgroups of S3’s center are scarce, clearly these are not the only finite subgroups. For
instance, given a positive integer n the subgroup generated by e

2iπ
n = cos 2π

n + i sin 2π
n is a cyclic

group with n elements. In general, finite subgroups of S3 are called finite rotation groups. There’s
even a complete classification of such subgroups – see [4].

What’s perhaps more surprising is that, even though the quotient S3/G is almost never a Lie
group for finite G ⊆ S3 – indeed, it usually isn’t even a group – the following holds.

Theorem 2.1. If G ⊆ S3 is a finite subgroup then the quotient space S3/G is a 3-dimensional
manifold.

The fact that the orbit Gq = {gq : g ∈ G} is finite implies we’re identifying a very small amount
of points in the quotient S3/G, which already hints at the fact that the quotient preserves much of
the local structure of S3, but how do we prove it?

Proof. We’ll start by showing that S3/G is locally Euclidean. Given q ∈ S3, since S3 is locally
Euclidean it suffices to find some neighborhood U ⊆ S3/G of Gq such that U ∼= π−1(U). Indeed,
since S is locally Euclidean, showing such neighborhood exists is akin to showing that the quotient
space is locally locally Euclidean – i.e. locally Euclidean. The obvious approach is to take some
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neighborhood V ⊆ S3 of q and try to prove that U = π(V ) is homeomorphic to V , but this clearly
doesn’t work for arbitrary V since the projection π : S3 −→ S3/G is not injective.

We could, however, search for some V satisfying the above criteria such that π �V is injective.
To do so, we start by taking disjoint open neighborhoods Vg ⊆ S3 of gq for each g ∈ G. Now notice
that for each g ∈ G, g−1Vg is an open neighborhood of q. Hence

V =
⋂
g∈G

g−1Vg

is an open neighborhood of q.
We claim that π �V is injective. Indeed, given distinct g1, g2 ∈ G it follows from the fact that

g1V ⊆ Vg1 and g2V ⊆ Vg2 that g1V ∩ g2V = ∅. Hence if v1, v2 ∈ V are such that v1 = gv2 for some
g ∈ G then g = 1 and therefore v1 = v2. In other words, if Gv1 = Gv2 then v1 = v2. This establishes
that π �V is injective. Now since the projection π is a surjective open function, π : V

∼−−→ π(V ).
The proof that the quotient S3/G is Hausdorff is quite similar to this: given two distinct points in

the quotient, we use disjoint neighborhoods of each of their points to construct disjoint neighborhoods
in the quotient space. Moreover, the fact that the quotient is second-countable follows immediately
from the construction of the quotient topology: the projection of a basis for S3 is a basis for the
quotient space. We are done. �

Notice that almost nothing we’ve said so far is specific to S3. Indeed, the same argument could
be adapted to a prove that…

Theorem 2.2. If M is a n-dimensional manifold and G is a finite group acting continuously and
freely on M – i.e. the actions of element of G other than the identity don’t have any fixed points –
then the quotient space M/G is an n-dimensional manifold.

Proof. Just replace S3 with M and q ∈ S3 with p ∈ M in the proof above. �

In fact, theorem 2.1 can be though-of as a special case of an even more general result about Lie
groups…

Theorem 2.3. If M is a smooth manifold and G is a compact Lie group acting freely in M then
the quotient space M/G is a smooth manifold.

The proof of theorem 2.3 is way beyond the scope of this notes, but if you’re interested in this
please refer to theorem 2.33 of [1]. What’s interesting about theorem 2.2 to us is that it allows us
to look at quotients of other manifolds by continuous actions of S3. An interesting example of such
actions is the action of S3 in H under conjugation.

First of all, notice the set set of pure quaternions {p ∈ H : Re p = 0} is stable under this action.
So S3 acts on the set of pure quaternions. Moreover, the map p 7−→ qpq−1 is clearly linear and∥∥qpq−1

∥∥ = ‖q‖ · ‖p‖ ·
∥∥q−1

∥∥ = ‖p‖. Hence by fixing the basis {i, j, k} and identifying the space of
pure quaternions with R3 we arrive at the infamous adjoint action

Ad : S3 −→ SO(3)
q 7−→Ad(q) : R3 −→R3

p 7−→ qpq−1

As simple as it is, this description of the adjoint action is a bit lacking in the sense that it relies
in the identification of R3 with the set of pure quaternions. Ideally we would like to describe Ad(q)
just in terms of it’s matrix representation.
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For instance, by computing

Ad(eiθ) i = (cos θ + i sin θ)i(cos θ − i sin θ) = i (3)
Ad(eiθ) j = (cos θ + i sin θ)j(cos θ − i sin θ) = j cos 2θ + k sin 2θ (4)
Ad(eiθ) k = (cos θ + i sin θ)k(cos θ − i sin θ) = −j sin 2θ + k cos 2θ (5)

we can see that the matrix representation of Ad(eiθ) in the basis {i, j, k} is

Ad(eiθ) =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

 ,

i.e. a rotation by 2θ radians around the x-axis. We claim that, given p ∈ S3 with Re p = 0 and
p 6= −i, Ad(cos θ+ p sin θ) acts on R3 as the rotation by 2θ radians around the p-axis – see exercise
2.4.7 of [2] – as shown in figure 4.

p

2θ

Figure 4: A sphere crossed by a line through the origin labeled as “p”. The coordinates of p induce
a line through the origin, and conjugation by cos θ + p sin θ acts as rotation by 2θ around this axis.

Of course, this is not a free action of a finite group, but it can be used to find interesting
examples of those. For instance, the action of the subgroup generate by cos π

n + k sin π
n in S2

identifies meridional sections of the sphere, as shown in figure 5. Now be removing the poles – i.e.
the only points fixed by any of the elements of our subgroup – we get a free action and we see that
it’s quotient is indeed a 2-dimensional manifold homeomorphic to a cylinder with no caps.

∼−→

Figure 5: A sphere with the region between two distinct meridians highlighted, followed by an arrow
pointing to a cylinder. The generator of the subgroup acts by rotating a point on the sphere by 2π

n
around the z-axis, so the quotient space is the same as a meridian section of the sphere without the
poles and with the meridians themselves identified. By dilating the circles parallel to the equator
we can morph such quotient into a rectangle where vertical edges are identified, which is a cylinder
with no caps.

What’s perhaps more amusing is that, since the image of the adjoint action contains all rotations,
it spans the entirety of SO(3). Now notice that kerAd is precisely Z(H) ∩ S3, also known as
Z(S3) = {1,−1} – i.e. Ad is almost faithful. In other words, the unitary quaternions S3 are the
orientation-preserving isometries of R3, at least as long as we’re willing to ignore their signs. This is
quite useful for graphical computing: we’ve now reduced the problem of representing 3× 3 matrices
to that of representing 4-dimensional vectors, and we’re reduced the problem of computing and
composing rotations to that of multiplying quaternion numbers – which is much faster to do.
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Even more so, this is also a really interesting intuition for the quaternions themselves. As Willian
Rowan Hamilton – the guy who discovered the quaternion numbers – wrote, “I am never satisfied
unless I think that I can look beyond or through the signs to the things signified” [3] – i.e. this
sort of intuitions are what actually endow what we study with meaning. Inspired the (at the time)
recently discovered geometric intuition of the complex plane, Hamilton himself was interested in
hypercomplex numbers related to the 3-dimensional space R3, and he spend the better part of 1843
trying to achieve this.

He failed, however, and for a good reason: Frobenius would later show that every finite-dimensional
division over R is one of R, C and H – in particular, there is no 3-dimensional division algebra over
R. Nevertheless, Hamilton later realised that the solution lied in the introduction of a forth coor-
dinate: “I then and there felt the galvanic circuit of though close; and the sparks which fell from
it were the fundamental equations”. According to himself, Hamilton could not “resit the impulse –
unphilosophical as it may have been – to cut (the quaternion formula) with a knife on a stone” on
a nearby bridge.

If you’re interested in Hamilton’s metaphysical considerations on quaternion numbers, space &
time I strongly recommend reading the historical interlude of the 4-th chapter of Introduction to
Representation Theory [3], but hopefully what we’ve said so far establishes that the action of the
3-sphere on R3 is fundamental to the understanding of the quaternions themselves. In other words,
the fact that the group structure of S3 comes from H is not a coincidence: in some sense, it is the
reason why H was first discovered.

This provides further evidence for our claim that the fact that S3 – the main theme of the
preceding discussion – is a group is something very particular of n = 3. We conclude these notes by
quoting the words of a plaque that now marks the site of Hamilton’s vandalism:

Here as he walked by on the 16th of October 1843 Sir William Rowan Hamilton in a
flash of genious discovered the fundamental formula for quaternion multiplication i2 =
j2 = k2 = ijk = −1 & cut it on a stone of this bridge.
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