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1 Introduction
Known as global analysis, or sometimes non-linear functional analysis, the field of study dedicated to
the understanding of infinite-dimensional manifolds has seen remarkable progress in the past several
decades. Among numerous discoveries, perhaps the greatest achievement in global analysis in the
last century was the recognition of the fact that many interesting function spaces possess natural
differentiable structures – which are usually infinite-dimensional.

As it turns out, many local problems regarding maps between finite-dimensional manifolds can be
translated to global questions about the geometry of function spaces – hence the name “global anal-
ysis”. More specifically, a remarkable number of interesting geometric objects can be characterized
as “critical points” of functionals in functions spaces. The usual suspects are, of course, geodesics
and minimal submanifolds in general, but there are many other interesting examples: harmonic
functions, Einstein metrics, periodic solutions to Hamiltonian vector fields, etc. [5, ch. 11].

Such objects are the domain of the so called calculus of variations, which is generally concerned
with finding functions that minimize or maximize a given functional, known as the action functional,
by subjecting such functions to “small variations” – which is known as the variational method. The
meaning of “small variations” have historically been a very dependent on the context of the problem
at hand. Only recently, with the introduction of the tools of global analysis, the numerous ad-hoc
methods under the umbrella of “variational method” have been unified into a coherent theory, which
we describe in the following.

By viewing the class of functions we’re interested in as a – most likely infinite-dimensional –
manifold F and the action functional as a smooth functional f : F −→ R we can find minimizing
and maximizing functions by studying the critical points of f . More generally, modern calculus of
variations is concerned with the study of critical points of smooth functionals Γ(E) −→ R, where
E −→ M is a smooth fiber bundle over a finite-dimensional manifold M and Γ is a given section
functor, such as smooth sections, continuous sections or Sobolev sections – notice that by taking
E = M × N the manifold Γ(E) is naturally identified with a space of functions M −→ N , which
gets us back to the original case.
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In these notes we hope to provide a very brief introduction to modern theory the calculus of
variations by exploring one of the simplest concrete examples of the previously described program.
We study the differential structure of the Banach manifold H1(I,M) of class H1 curves in a finite-
dimensional Riemannian manifold M , which encodes the solution to the classic variational problem:
that of geodesics. Hence the particular action functional we are interested is the infamous energy
functional

E : H1(I,M) −→ R

γ 7−→ 1

2

∫ 1

0

‖γ̇(t)‖2 dt,

as well as the length functional

L : H1(I,M) −→ R

γ 7−→
∫ 1

0

‖γ̇(t)‖ dt

In section 2 we will describe the differential structure of H1(I,M) and its canonical Riemannian
metric. In section 3 we study the critical points of the energy functional E and describe how the
fundamental results of the classical theory of the calculus of variations in the context of Riemannian
manifolds can be reproduced in our new setting. Other examples of function spaces are explored in
detail in [2, sec. 6]. The 11th chapter of [5] is also a great reference for the general theory of spaces
of sections of fiber bundles.

We should point out that we will primarily focus on the broad strokes of the theory ahead and
that we will leave many results unproved. The reasoning behind this is twofold. First, we don’t want
to bore the reader with the numerous technical details of some of the constructions we’ll discuss in
the following. Secondly, and this is more important, these notes are meant to be concise. Hence we
do not have the necessary space to discuss neither technicalities nor more involved applications of
the theory we will develop.

In particular, we leave the intricacies of Palais’ and Smale’s discussion of condition (C) – which
can be seen as a substitute for the failure of a proper Hilbert space to be locally compact [3, ch. 2] –
and its applications to the study of closed geodesics out of these notes. As previously stated, many
results are left unproved, but we will include references to other materials containing proofs. We’ll
assume basic knowledge of differential and Riemannian geometry, as well as some familiarity with
the classical theory of the calculus of variations – see [1, ch. 5] for the classical approach.

Before moving to the next section we would like to review the basics of the theory of real Banach
manifolds.

1.1 Banach Manifolds
While it is certainly true that Banach spaces can look alien to someone who has never ventured
outside of the realms of Euclidean space, Banach manifolds are surprisingly similar to their finite-
dimensional counterparts. As we’ll soon see, most of the usual tools of differential geometry can be
quite easily translated to the context of Banach manifolds1. The reason behind this is simple: it
turns out that calculus has nothing to do with Rn.

What we mean by this last statement is that none of the fundamental ingredients of calculus –
the ones necessary to define differentiable functions in Rn, namely the fact that Rn is a complete
normed space – are specific to Rn. In fact, these ingredients are precisely the features of a Banach
space. Thus we may naturally generalize calculus to arbitrary Banach spaces, and consequently
generalize smooth manifolds to spaces modeled after Banach spaces. We begin by the former.

1The real difficulties with Banach manifolds only show up while proving certain results, and are mainly due to
complications regarding the fact that not all closed subspaces of a Banach space have a closed complement.
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Definition 1.1. Let V and W be Banach spaces and U ⊆ V be an open subset. A continuous
map f : U −→ W is called differentiable at p ∈ U if there exists a continuous linear operator
dfp ∈ L(V,W ) such that

‖f(p+ h)− f(p)− dfph‖
‖h‖

−→ 0

as h −→ 0 in V .

Definition 1.2. Given Banach spaces V and W and an open subset U ⊆ V , a continuous map
f : U −→ W is called differentiable of class C1 if f is differentiable at p for all p ∈ U and the
derivative map

df : U −→ L(V,W )

p 7−→ dfp

is continuous. Since L(V,W ) is a Banach space under the operator norm, we may recursively define
functions of class Cn for n > 1: a function f : U −→W of class Cn−1 is called differentiable of class
Cn if the map2

dn−1f : U −→ L(V,L(V, · · ·L(V,W ))) ∼= L(V ⊗n,W )

is of class C1. Finally, a map f : U −→ W is called differentiable of class C∞ or smooth if f is of
class Cn for all n > 0.

The following lemma is also of huge importance, and it is known as the chain rule.

Lemma 1.1. Given Banach spaces V1, V2 and V3, open subsets U1 ⊆ V1 and U2 ⊆ V2 and two
smooth maps f : U1 −→ U2 and g : U2 −→ V3, the composition map g ◦ f : U1 −→ V3 is smooth and
its derivative is given by

d(g ◦ f)p = dgf(p) ◦ dfp

As promised, these simple definitions allows us to expand the usual tools of differential geometry
to the infinite-dimensional setting. In fact, in most cases it suffices to simply copy the definition of
the finite-dimensional case. For instance, as in the finite-dimensional case we may call a map between
Banach manifolds M and N smooth if it can be locally expressed as a smooth function between open
subsets of the model spaces. As such, we will only provide the most important definitions: those of
a Banach manifold and its tangent space at a given point. Complete accounts of the subject can be
found in [3, ch. 1] and [4, ch. 2].

Definition 1.3. A Banach manifold M is a Hausdorff topological space endowed with a maximal
atlas {(Ui, ϕi)}i, i.e. an open cover {Ui}i of M and homeomorphisms ϕi : Ui −→ ϕi(Ui) ⊆ Vi –
known as charts – where

(i) Each Vi is a Banach space

(ii) For each i and j, ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj) ⊆ Vj −→ ϕi(Ui ∩ Uj) ⊆ Vi is a smooth map

(iii) {(Ui, ϕi)}i is maximal with respect to the items above

Definition 1.4. Given a Banach manifold M with maximal atlas {(Ui, ϕi)}i and p ∈M , the tangent
space TpM of M at p is the quotient of the space {γ : (−ε, ε) −→M | γ is smooth, γ(0) = p} by the
equivalence relation that identifies two curves γ and η such that (ϕi ◦ γ)′(0) = (ϕi ◦ η)′(0) for all i
with p ∈ Ui.

Definition 1.5. Given p ∈M and a chart ϕi : Ui −→ Vi with p ∈ Ui, let

φp,i : TpM −→ Vi

[γ] 7−→ (ϕi ◦ γ)′(0)
2Here we consider the projective tensor product of Banach spaces. See [3, ch. 1].
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Proposition 1.1. Given p ∈M and a chart ϕi with p ∈ Ui, φp,i is a linear isomorphism. For any
given charts ϕi, ϕj, the pullback of the norms of Vi and Vj by ϕi and ϕj respectively define equivalent
norms in TpM . In particular, any choice chart gives TpM the structure of a topological vector space,
and this topology is independent of this choice3.

Proof. The first statement about φp,i being a linear isomorphism should be clear from the definition
of TpM . The second statement about the equivalence of the norms is equivalent to checking that
φp,i ◦ φ−1

p,j : Vj −→ Vi is continuous for each i and j with p ∈ Ui and p ∈ Uj .
But this follows immediately from the identity

(φp,i ◦ φ−1
p,j)v = (ϕi ◦ ϕ−1

j ◦ γv)′(0)
(chain rule) = d(ϕi ◦ ϕ−1

j )ϕj(p)γ̇v(0)

= d(ϕi ◦ ϕ−1
j )ϕj(p)v

where v ∈ Vj and γv : (−ε, ε) −→ Vj is any smooth curve with γv(0) = ϕj(p) and γ̇v(0) = v:
φp,i ◦ φ−1

p,j = d(ϕi ◦ ϕ−1
j )ϕj(p) is continuous by definition. �

Notice that a single Banach manifold may be “modeled after” multiple Banach spaces, in the
sense that the Vi’s of definition 1.3 may vary with i. Lemma 1.1 implies that for each i and j with
p ∈ Ui ∩Uj , (dϕi ◦ϕ−1

j )ϕj(p) : Vj −→ Vi is a continuous linear isomorphism, so that we may assume
that each connected component of M is modeled after a single Banach space V . It is sometimes
convenient, however, to allow ourselves the more lenient notion of Banach manifold afforded by
definition 1.3.

We should also note that some authors assume that both the Vi’s and M itself are separable, in
which case the assumption that M is Hausdorff is redundant. Although we are primarily interested
in manifolds modeled after separable spaces, in the interest of affording ourselves a greater number of
examples we will not assume separability – unless explicitly stated otherwise. Speaking of examples…

Example 1.1. Any Banach space V can be seen as a Banach manifold with atlas given by {(V, id :
V −→ V )} – sometimes called an affine Banach manifold. In fact, any open subset U ⊆ V of a
Banach space V is a Banach manifold under a global chart id : U −→ V .

Example 1.2. The group of units A× of a Banach algebra A is an open subset, so that it constitutes
a Banach manifold modeled after A [2, sec. 3]. In particular, given a Banach space V the group
GL(V ) of continuous linear isomorphisms V −→ V is a – possibly non-separable – Banach manifold
modeled after the space L(V ) = L(V, V ) under the operator norm: GL(V ) = L(V )×.

Example 1.3. Given a complex Hilbert space H, the space U(H) of unitary operators H −→ H –
endowed with the topology of the operator norm – is a Banach manifold modeled after the closed
subspace u(H) ⊆ L(H) of continuous skew-symmetric operators H −→ H [6, p. 4].

These last two examples are examples of Banach Lie groups – i.e. Banach manifolds endowed
with a group structure whose group operations are smooth. Perhaps more interesting to us is the
fact that these are both examples of function spaces. Having reviewed the basics of the theory of
Banach manifolds we can proceed to our in-depth exploration of a particular example, that of the
space H1(I,M).

2 The Structure of H1(I,M)

Throughout this section let M be a finite-dimensional Riemannian manifold. As promised, in this
section we will highlight the differential and Riemannian structures of the space H1(I,M) of class
H1 curves in a M . The first question we should ask ourselves is an obvious one: what is H1(I,M)?
Specifically, what is a class H1 curve in M?

3In general TpM is not a normed space, since the norms induced by two distinct choices of chard need not to
coincide. Nevertheless, the topology induced by these norms is the same.
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Given an interval I, recall that a continuous curve γ : I −→ Rn is called a class H1 curve if γ is
absolutely continuous, γ̇(t) exists for almost all t ∈ I and γ̇ ∈ H0(I,Rn) = L2(I,Rn). It is a well
known fact that the so called Sobolev space H1([0, 1],Rn) of all class H1 curves in Rn is a Hilbert
space under the inner product given by

〈γ, η〉1 =

∫ 1

0

γ(t) · η(t) + γ̇(t) · η̇(t) dt

Finally, we may define…

Definition 2.1. Given an n-dimensional manifold M , a continuous curve γ : I −→ M is called a
class H1 curve if ϕi ◦ γ : J −→ Rn is a class H1 curve for any chart ϕi : Ui ⊆ M −→ Rn – i.e. if γ
can be locally expressed as a class H1 curve in terms of the charts of M . We’ll denote by H1(I,M)
the set of all class H1 curves I −→M .

Remark. From now on we fix I = [0, 1].
Notice in particular that every piece-wise smooth curve γ : I −→ M is a class H1 curve. This

answer raises and additional question though: why class H1 curves? The classical theory of the
calculus of variations – as described in [1, ch. 5] for instance – is usually exclusively concerned with
the study of piece-wise smooth curves, so the fact that we are now interested a larger class of curves
– highly non-smooth curves, in fact – should come as a surprise to the reader.

To answer this second question we return to the case of M = Rn. Denote by C ′∞(I,Rn) the
space of piece-wise curves in Rn. As described in section 1, we would like C ′∞(I,Rn) to be a Banach
manifold under which both the energy functional and the length functional are smooth maps. As
most function spaces, C ′∞(I,Rn) admits several natural topologies. Some of the most obvious
candidates are the uniform topology and the topology of the ‖·‖0 norm, which are the topologies
induced by the norms

‖γ‖∞ = sup
t

‖γ(t)‖

‖γ‖0 =

√∫ 1

0

‖γ(t)‖2 dt

respectively.
The problem with the first candidate is that L : C ′∞(I,Rn) −→ R is not a continuous map under

the uniform topology. This can be readily seen by approximating the curve

γ : I −→ R2

t 7−→ (t, 1− t)

with “staircase curves” γn : I −→ Rn for larger and larger values of n, as shown in figure 1: clearly
γn −→ γ in the uniform topology, but L(γn) = 2 does not approach L(γ) =

√
2 as n approaches ∞.

The issue with this particular example is that while γn −→ γ uniformly, γ̇n does not converge to
γ̇ in the uniform topology. This hints at the fact that in order for E and L to be continuous maps
we need to control both γ and γ̇. Hence a natural candidate for a norm in C ′∞(I,Rn) is

‖γ‖21 = ‖γ‖20 + ‖γ̇‖20 ,

which is, of course, the norm induced by the inner product 〈 , 〉1 – here ‖·‖0 denotes the norm of
H0(I,Rn) = L2(I,Rn).

The other issue we face is one of completeness. Since Rn has a global chart, we expect C ′∞(I,Rn)
to be affine too. In other words, it is natural to expect C ′∞(I,Rn) to be Banach space. In particular,
C ′∞(I,Rn) must be complete. This is unfortunately not the case for C ′∞(I,Rn) in the ‖·‖1 norm,
but we can consider its completion. Lo and behold, a classical result by Lebesgue establishes that
this completion just so happens to coincide with H1(I,Rn).
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γnγ

1/n

Figure 1: A diagonal line representing the curve γ overlaps a staircase-like curve γn, whose steps
measure 1/n in width and height.

It’s also interesting to note that the completion of C ′∞(I,Rn) with respect to the norms ‖·‖∞
and ‖·‖0 are C0(I,Rn) and H0(I,Rn), respectively, and that the natural inclusions

H1(I,Rn) ↪−→ C0(I,Rn) ↪−→ H0(I,Rn) (1)

are continuous.
This can be seen as a particular case of a more general result regarding spaces of sections of

vector bundles over the unit interval I. Explicitly, we find…

Proposition 2.1. Given an Euclidean bundle E −→ I – i.e. a vector bundle endowed with a
Riemannian metric – the space C0(E) of all continuous sections of E is the completion of C ′∞(E)
under the norm given by

‖ξ‖∞ = sup
t

‖ξt‖

Proposition 2.2. Given an Euclidean bundle E −→ I, the space H0(E) of all square integrable
sections of E is the completion of C ′∞(E) under the inner product given by

〈ξ, η〉0 =

∫ 1

0

〈ξt, ηt〉 dt

Proposition 2.3. Given an Euclidean bundle E −→ I, the space H1(E) of all class H1 sections of
E is the completion of the space C ′∞(E) of piece-wise smooth sections of E under the inner product
given by

〈ξ, η〉1 = 〈ξ, η〉0 +
〈
∇ d

dt
ξ,∇ d

dt
η
〉
0

Proposition 2.4. Given an Euclidean bundle E −→ I, the inclusions

H1(E) ↪−→ C0(E) ↪−→ H0(E)

are continuous. More precisely, ‖ξ‖∞ 6
√
2 ‖ξ‖1 and ‖ξ‖0 6 ‖ξ‖∞.

Proof. Given ξ ∈ H0(E) we have

‖ξ‖20 =

∫ 1

0

‖ξt‖2 dt 6
∫ 1

0

‖ξ‖2∞ dt = ‖ξ‖2∞
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Now given ξ ∈ H1(E) fix t0, t1 ∈ I with ‖ξ‖∞ = ‖ξt1‖ and ‖ξt0‖ 6 ‖ξ‖0. If t0 < t1 then

‖ξ‖2∞ = ‖ξt0‖
2
+

∫ t1

t0

d

dt
‖ξt‖2 dt

6 ‖ξ‖20 +
∫ t1

t0

d

dt
‖ξt‖2 dt

(∇ is compatible with the metric) = ‖ξ‖20 +
∫ t1

t0

2
〈
ξt,∇ d

dt
ξt

〉
dt

(Cauchy-Schwarz) 6 ‖ξ‖20 +
∫ 1

0

2 ‖ξt‖ ·
∥∥∥∇ d

dt
ξt

∥∥∥ dt

6 ‖ξ‖20 +
∫ 1

0

‖ξt‖2 +
∥∥∥∇ d

dt
ξt

∥∥∥2 dt

= ‖ξ‖20 + ‖ξ‖20 +
∥∥∥∇ d

dt
ξ
∥∥∥2
0

6 2 ‖ξ‖21

Similarly, if t0 > t1 then

‖ξ‖2∞ = ‖ξt0‖
2
+

∫ t1

t0

d

dt
‖ξt‖2 dt = ‖ξt0‖

2
+

∫ 1−t1

1−t0

d

dt
‖ξ1−t‖2 dt 6 2 ‖ξ‖21

�

Remark. Apply proposition 2.4 to the trivial bundle I ×Rn −→ I to get the continuity of the maps
in (1).

We are particularly interested in the case of the pullback bundle E = γ∗TM −→ I, where
γ : I −→M is a piece-wise smooth curve.

γ∗TM TM

I M

π π

γ

We now have all the necessary tools to describe the differential structure of H1(I,M).

2.1 The Charts of H1(I,M)

We begin with a technical lemma.

Lemma 2.1. Let W ⊆ TM be an open neighborhood of the zero section in TM . Given γ ∈
C ′∞(I,M), denote by Wγ,t the set W ∩ Tγ(t)M and let Wγ =

⋃
tWγ,t. Then H1(Wγ) = {X ∈

H1(γ∗TM) : Xt ∈Wγ,t ∀t} is an open subset of H1(γ∗TM).

Proof. Let C0(Wγ) = {X ∈ C0(γ∗TM) : Xt ∈ Wγ,t ∀t}. We claim C0(Wγ) is open in C0(γ∗TM).
Indeed, given X ∈ C0(Wγ) there exists δ > 0 such that

‖X − Y ‖∞ < δ =⇒ ‖Xt − Yt‖ < δ ∀t
=⇒ Yt ∈Wγ,t ∀t
=⇒ Y ∈ C0(Wγ)

Finally, notice that H1(Wγ) is the inverse image of C0(Wγ) under the continuous inclusion
H1(γ∗TM) ↪−→ C0(γ∗TM) and is therefore open. �
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Let W ⊆ TM be an open neighborhood of the zero section in TM such that exp �W : W −→
exp(W ) is invertible – whose existence follows from the fact that the injectivity radius depends
continuously on p ∈M .

Definition 2.2. Given γ ∈ C ′∞(I,M) let Wγ ,Wγ,t ⊆ γ∗TM be as in lemma 2.1, define

expγ : H1(Wγ)−→ H1(I,M)
X 7−→ exp ◦X : I −→M

t 7−→ expγ(t)(Xt)

and let Uγ = expγ(H
1(Wγ)).

Finally, we find…

Theorem 2.1. Given γ ∈ C ′∞(I,M), the map expγ : H1(Wγ) −→ Uγ is bijective. The collection
{(Uγ , exp

−1
γ : Uγ −→ H1(γ∗TM))}γ∈C′∞(I,M) is an atlas for H1(I,M) under the final topology of

the maps expγ – i.e. the coarsest topology such that such maps are continuous. This atlas gives
H1(I,M) the structure of a separable Banach manifold modeled after separable Hilbert spaces, with
typical representatives4 H1(γ∗TM) ∼= H1(I,Rn).

The fact that expγ is bijective should be clear from the definition of Uγ and Wγ . That each
exp−1

γ is a homeomorphism is also clear from the definition of the topology of H1(I,M). Moreover,
since C ′∞(I,M) is dense, {Uγ}γ∈C′∞(I,M) is an open cover of H1(I,M). The real difficulty of this
proof is showing that the transition maps

exp−1
η ◦ expγ : exp−1

γ (Uγ ∩ Uη) ⊆ H1(γ∗TM) −→ H1(η∗TM)

are diffeomorphisms, as well as showing that H1(I,M) is separable. We leave these details as an
exercise to the reader – see theorem 2.3.12 of [3] for a full proof.

It’s interesting to note that this construction is functorial. More precisely…

Theorem 2.2. Given finite-dimensional Riemannian manifolds M and N and a smooth map f :
M −→ N , the map

H1(I, f) : H1(I,M) −→ H1(I,N)

γ 7−→ f ◦ γ

is smooth. In addition, H1(I, f ◦ g) = H1(I, f) ◦ H1(I, g) and H1(I, id) = id for any composable
smooth maps f and g. We thus have a functor H1(I,−) : Rmnn −→ BMnfd from the category
Rmnn of finite-dimensional Riemannian manifolds and smooth maps onto the category BMnfd of
Banach manifolds and smooth maps.

We would also like to point out that this is a particular case of a more general construction:
that of the Banach manifold H1(E) of class H1 sections of a smooth fiber bundle E −→ I – not
necessarily a vector bundle. Our construction of H1(I,M) is equivalent to that of the manifold
H1(I ×M), in the sense that the canonical map

·̃ : H1(I,M) −→H1(I ×M)
γ 7−→ γ̃ : I −→ I ×M

t 7−→ (t, γ(t))

can be easily checked to be a diffeomorphism.
The space H1(E) is modeled after the Hilbert spaces H1(F ) of class H1 sections of open sub-

bundles F ⊆ E which have the structure of a vector bundle – the so called vector bundle neighborhoods
of E. This construction is highlighted in great detail and generality in the first section of [5, ch. 11],
but unfortunately we cannot afford such a diversion in these short notes. Having said that, we are
now finally ready to layout the Riemannian structure of H1(I,M).

4Any trivialization of γ∗TM induces an isomorphism H1(γ∗TM)
∼−−→ H1(I × Rn) ∼= H1(I,Rn).
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2.2 The Metric of H1(I,M)

We begin our discussion of the Riemannian structure of H1(I,M) by looking at its tangent bundle.
Notice that for each γ ∈ C ′∞(I,M) the chart exp−1

γ : Uγ −→ H1(γ∗TM) induces a canonical
isomorphism φγ = φγ,γ : TγH

1(I,M)
∼−−→ H1(γ∗TM), as described in proposition 1.1. In fact, these

isomorphisms may be extended to a canonical isomorphism of vector bundles, as seen in…

Lemma 2.2. Given i = 0, 1, the collection {(ψi,γ(H
1(Wγ)×Hi(γ∗TM)), ψ−1

i,γ )}γ∈C′∞(I,M) with

ψi,γ : H1(Wγ)×Hi(γ∗TM) −→
∐

η∈H1(I,M)H
i(η∗TM)

(X,Y ) 7−→ ψi,γ(X) : I −→ expγ(X)∗TM
t 7−→ (d exp)XtYt

gives
∐

γ∈C′∞(I,M)H
i(γ∗TM) −→ H1(I,M) the structure of a smooth vector bundle5.

Proposition 2.5. There is a canonical isomorphism of vector bundles

TH1(I,M)
∼−−→

∐
γ∈H1(I,M)

H1(γ∗TM)

whose restriction TγH
1(I,M)

∼−−→ H1(γ∗TM) is given by φγ for all γ ∈ C ′∞(I,M).

Proof. Note that the sets H1(Wγ)× TγH
1(I,M) are precisely the images of the charts

ϕ−1
γ : ϕγ(H

1(Wγ)× TγH
1(I,M)) ⊆ TH1(I,M) −→ H1(Wγ)× TγH

1(I,M)

of TH1(I,M) given by6

ϕγ : H1(Wγ)× TγH
1(I,M) −→ TH1(I,M)

(X,Y ) 7−→ (d expγ)Xφγ(Y )

By composing charts we get a fiber-preserving, fiber-wise linear diffeomorphism

ϕγ(H
1(Wγ)× TγH

1(I,M)) ⊆ TH1(I,M)
∼−−→ ψ1,γ(H

1(Wγ)×H1(γ∗TM)),

which takes ϕγ(X,Y ) ∈ Texpγ(X)H
1(I,M) to ψ1,γ(X,φγ(Y )) ∈ H1(expγ(X)∗TM). With enough

patience, one can deduce from the fact that ϕ−1
γ and ψ−1

1,γ are charts that these maps agree in the
intersections of the open subsets ϕγ(H

1(Wγ) × TγH
1(I,M)), so that they may be glued together

into a global smooth map Φ : TH1(I,M) −→
∐

η∈H1(I,M)H
1(η∗TM).

Since this map is a fiber-preserving, fiber-wise linear local diffeomorphism, this is an isomorphism
of vector bundles. Furthermore, by construction

Φ(X)t = ψ1,γ(0, φγ(X))t = (d exp)0γ(t)
φγ(X)t = φγ(X)t

for each γ ∈ C ′∞(I,M) and X ∈ TγH
1(I,M). In other words, Φ�TγH1(I,M)= φγ as required. �

At this point it may be tempting to think that we could now define the metric of H1(I,M) in
a fiber-wise basis via the identification TγH

1(I,M) ∼= H1(γ∗TM). In a very real sense this is what
we are about to do, but unfortunately there are still technicalities in our way. The issue we face is
that proposition 2.2 only applies for smooth vector bundles E −→ I, which may not be the case for
E = γ∗TM if γ ∈ H1(I,M) lies outside of C ′∞(I,M). In fact, neither 〈X,Y 〉0 nor 〈 , 〉1 are defined
a priori for X,Y ∈ H0(γ∗TM) with γ /∈ C ′∞(I,M).

Nevertheless, we can get around this limitation by extending the metric 〈 , 〉0 and the covariant
derivative ∇

dt = ∇ d
dt

to those H0(γ∗TM) with γ /∈ C ′∞(I,M). In other words, we’ll show…

5Here we use the canonical identification Tγ(t)M ∼= TXtTM to apply the vector Yt ∈ Tγ(t)M to the map (d exp)Xt :
TXtTM −→ Texpγ(t)(Xt)M .

6Once more, we use the canonical identification TXH1(Wγ) ∼= H1(γ∗TM) to apply the vector φγ(Y ) ∈ H1(γ∗TM)
to (d expγ)X : TXH1(Wγ) −→ Texpγ(X)H

1(I,M).
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Theorem 2.3. The vector bundle
∐

γ∈H1(I,M)H
0(γ∗TM) −→ H1(I,M) admits a canonical Rie-

mannian metric whose restriction to the fibers H0(γ∗TM) =
∐

η∈H1(I,M)H
0(η∗TM)

∣∣∣
γ

for γ ∈

C ′∞(I,M) is given by 〈 , 〉0 as defined in proposition 2.2.

Proof. Given γ ∈ C ′∞(I,M) and X ∈ H1(γ∗TM), let

gγX : H0(γ∗TM)×H0(γ∗TM) −→ R

(Y, Z) 7−→
∫ 1

0

〈(d exp)Xt
Yt, (d exp)Xt

Zt〉 dt

This is clearly a Riemannian metric in the bundle H1(Wγ) × H0(γ∗TM) −→ H1(Wγ). Now
by composing with the chart ψ−1

0,γ as in lemma 2.2 we get a Riemannian metric gγ in the bundle∐
η∈Uγ

H0(η∗TM) =
∐

η∈H1(I,M)H
0(η∗TM)

∣∣∣
Uγ

−→ Uγ . One can then quickly verify that the
gγ ’s agree in the intersection of the Uγ ’s, so that they define a global Riemannian metric g in∐

η∈H1(I,M)H
0(η∗TM).

Furthermore, given γ ∈ C ′∞(I,M) and X,Y ∈ H0(γ∗TM) by construction we have

gγ(X,Y ) = gγ0 (X,Y ) =

∫ 1

0

〈(d exp)0γ(t)
Xt, (d exp)0γ(t)

Yt〉 dt =
∫ 1

0

〈Xt, Yt〉 dt = 〈X,Y 〉0

�

Proposition 2.6. The map

∂ : H1(I,M) −→
∐
γ

H0(γ∗TM)

γ 7−→ γ̇

is a smooth section of
∐

γ∈H1(I,M)H
0(γ∗TM) −→ H1(I,M).

Proposition 2.7. Denote by ∇0 : X(H1(I,M))× Γ
(∐

γ H
0(γ∗TM)

)
−→ Γ

(∐
γ H

0(γ∗TM)
)

the
Levi-Civita connection of

∐
γ H

0(γ∗TM). The map

X(H1(I,M)) −→ Γ

(∐
γ

H0(γ∗TM)

)
X̃ 7−→ ∇0

X̃
∂

is such that
(∇0

X∂)γ = ∇ d
dt
X =

∇
dt
X

for all γ ∈ C ′∞(I,M) and X ∈ H1(γ∗TM) ∼= TγH
1(I,M). Given some arbitrary γ ∈ H1(I,M)

and X ∈ H1(γ∗TM) we therefore denote (∇0
X∂)γ simply by ∇

dtX.

The proofs of these last two propositions were deemed too technical to be included in here, but
see proposition 2.3.16 and 2.3.18 of [3]. We may now finally describe the canonical Riemannian
metric of H1(I,M).

Definition 2.3. Given γ ∈ H1(I,M) and X,Y ∈ H1(γ∗TM), let

〈X,Y 〉1 = 〈X,Y 〉0 +
〈
∇
dt
X,

∇
dt
Y

〉
0
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At this point it should be obvious that definition 2.3 does indeed endow H1(I,M) with the
structure of a Riemannian manifold: the inner products 〈 , 〉1 : H1(γ∗TM)×H1(γ∗TM) −→ R may
be glued together into a single positive-definite section 〈 , 〉1 ∈ Γ

(
Sym2∐

γ H
1(γ∗TM)

)
– whose

smoothness follows from theorem 2.3, proposition 2.6 and proposition 2.7 – which is then mapped
to a positive-definite section of Sym2 TH1(I,M) by the induced isomorphism

Γ

(
Sym2

∐
γ

H1(γ∗TM)

)
∼−−→ Γ(Sym2 TH1(I,M))

We are finally ready to discuss some applications.

3 Applications to the Calculus of Variations
As promised, in this section we will apply our understanding of the structure of H1(I,M) to the
calculus of variations, and in particular to the geodesics problem. We also describe some further
applications, such as the Morse index theorem and the Jacobi-Darboux theorem. We start by
defining…

Definition 3.1. Given γ ∈ H1(I,M), a variation {γt}t of γ is a smooth curve γ· : (−ε, ε) −→
H1(I,M) with γ0 = γ. We call the vector d

dt

∣∣
t=0

γt ∈ H1(γ∗TM) the variational vector field of
{γt}t.

We should note that the previous definition encompasses the classical definition of a variation of
a curve, as defined in [1, ch. 5] for instance: any piece-wise smooth function H : I × (−ε, ε) −→ M
determines a variation {γt}t given by γt(s) = H(s, t). This is representative of the theory that lies
ahead, in the sense that most of the results we’ll discuss in the following are minor refinements of
the classical theory. Instead, the value of the theory we will develop in here lies in its conceptual
simplicity: instead of relying in ad-hoc methods we can now use the standard tools of calculus to
study the critical points of the energy functional E.

What we mean by this last statement is that by look at the energy functional as a smooth function
E ∈ C∞(H1(I,M)) we can study its classical “critical points” – i.e. curves γ with a variation {γt}t
such that d

dt

∣∣
t=0

E(γt) = 0 – by looking at its derivative. The first variation of energy thus becomes
a particular case of a formula for dE, and the second variation of energy becomes a particular case
of a formula for the Hessian of E at a critical point. Without further ado, we prove…

Theorem 3.1. The energy functional

E : H1(I,M) −→ R

γ 7−→ 1

2
‖∂γ‖20 =

1

2

∫ 1

0

‖γ̇(t)‖2 dt

is smooth and dEγX =
〈
∂γ, ∇

dtX
〉
0
.

Proof. The fact that E is smooth should be clear from the smoothness of ∂ and ‖·‖0. Furthermore,
from the definition of ∇

dt we have〈
∂γ,

∇
dt
X

〉
0

=
〈
∂γ, (∇0

X∂)γ
〉
0

= (X̃〈∂, ∂〉0)(γ)−
〈
(∇0

X∂)γ , ∂γ
〉
0

= 2X̃E(γ)−
〈
∇
dt
X, ∂γ

〉
0

= 2dEγX −
〈
∂γ,

∇
dt
X

〉
0

where X̃ ∈ X(H1(I,M)) is any vector field with X̃γ = X. �
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As promised, by applying the chain rule and using the compatibility of ∇ with the metric we
arrive at the classical formula for the first variation of energy E.

Corollary 3.1. Given a piece-wise smooth curve γ : I −→M with γ �[ti,ti+1] smooth and a variation
{γt}t of γ with variational vector field X we have

d

dt

∣∣∣∣
t=0

E(γt) =
∑
i

〈γ̇(t), Xt〉|ti+1

t=ti
−
∫ 1

0

〈
∇
dt
γ̇(t), Xt

〉
dt

Another interesting consequence of theorem 3.1 is…

Corollary 3.2. The only critical points of E in H1(I,M) are the constant curves.

Proof. Clearly every constant curve is a critical point. On the other hand, if γ ∈ H1(I,M) is such
that

〈
∂γ, ∇

dtX
〉
0
= dEγX = 0 for all X ∈ H1(γ∗TM) then ∂γ = 0 and therefore γ is constant. �

Another way to put is to say that the problem of characterizing the critical points of E in
H1(I,M) is not interesting at all. This shouldn’t really come as a surprise, as most interesting
results from the classical theory are concerned with particular classes of variations of a curves, such
as variations with fixed endpoints or variations through loops. In the next section we introduce
two submanifolds of H1(I,M), corresponding to the classes of variations previously described, and
classify the critical points of the restrictions of E to such submanifolds.

3.1 The Critical Points of E

We begin with a technical lemma.

Lemma 3.1. The maps σ, τ : H1(I,M) −→M with σ(γ) = γ(0) and τ(γ) = γ(1) are submersions.

Proof. To see that σ and τ are smooth it suffices to observe that their local representation in Uγ for
γ ∈ C ′∞(I,M) is given by the maps

U ⊆ H1(Wγ) −→ Tγ(0)M U ⊆ H1(Wγ) −→ Tγ(1)M

X 7−→ X0 X 7−→ X1

which are indeed smooth functions. This local representation also shows that

dσγ : H1(γ∗TM) −→ Tγ(0)M dτγ : H1(γ∗TM) −→ Tγ(1)M

X 7−→ X0 X 7−→ X1

are surjective maps for all γ ∈ H1(I,M). �

We can now show…

Theorem 3.2. The subspace ΩpqM ⊆ H1(I,M) of curves joining p, q ∈M is a submanifold whose
tangent space TγΩpqM is the subspace of H1(γ∗TM) consisting of class H1 vector fields X along
γ with X0 = X1 = 0. Likewise, the space ΛM ⊆ H1(I,M) of free loops is a submanifold whose
tangent at γ is given by all X ∈ H1(γ∗TM) with X0 = X1.

Proof. To see that these are submanifolds, it suffices to note that ΩpqM and ΛM are the inverse
images of the closed submanifolds {(p, q)}, {(p, p) : p ∈ M} ⊆ M × M under the submersion
(σ, τ) : H1(I,M) −→M ×M .

The characterization of their tangent bundles should also be clear: any curve (−ε, ε) −→
H1(I,M) passing through γ ∈ ΩpqM whose image is contained in ΩpqM is a variation of γ with
fixed endpoints, so its variational vector field X satisfies X0 = X1 = 0. Likewise, any variation of a
loop γ ∈ ΛM trough loops – i.e. a curve (−ε, ε) −→ ΛM passing through γ – satisfies X0 = X1. �

Finally, as promised we will provide a characterization of the critical points of E �ΩpqM and
E �ΛM .
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Theorem 3.3. The critical points of E �ΩpqM are precisely the geodesics of M joining p and q. The
critical points of E �ΛM are the closed geodesics of M – including the constant maps.

Proof. We start by supposing that γ is a geodesic. Since γ is smooth,

dEγX =

∫ 1

0

〈
γ̇(t),

∇
dt
X

〉
dt =

∫ 1

0

d

dt
〈γ̇(t), Xt〉 −

〈
∇
dt
γ̇(t), X

〉
dt = 〈γ̇(1), X1〉 − 〈γ̇(0), X0〉

Now if γ ∈ ΩpqM and X ∈ TγΩpqM then dEγX = 〈γ̇(1), 0〉 − 〈γ̇(0), 0〉 = 0. Likewise, if γ is a
closed geodesic and X ∈ TγΛM we find dEγX = 0 since γ̇(0) = γ̇(1) and X0 = X1. This establishes
that the geodesics are indeed critical points of the restrictions of E.

Suppose γ ∈ ΩpqM is a critical point and let Y, Z ∈ H1(γ∗TM) be such that

∇
dt
Y = ∂γ Y0 = 0

∇
dt
Z = 0 Z1 = Y1

Let Xt = Yt − tZt. Then X0 = X1 = 0 and ∇
dtX = ∂γ − Z. Furthermore,

〈Z, ∂γ − Z〉0 =

〈
Z,

∇
dt
X

〉
0

=

∫ 1

0

d

dt
〈Zt, Xt〉 dt = 〈Z1, X1〉 − 〈Z0, X0〉 = 0

and
〈∂γ, ∂γ − Z〉0 =

〈
∂γ,

∇
dt
X

〉
0

= dEγX = 0,

which implies ‖∂γ − Z‖20 = 0. In other words, ∂γ = Z ∈ H1(γ∗TM) and therefore ∇
dt γ̇(t) =

∇
dtZ = 0

– i.e. γ is a geodesic.
Finally, if γ ∈ ΛM with γ(0) = γ(1) = p we may apply the argument above to conclude that γ

is a geodesic joining p to q = p. To see that γ is a closed geodesic apply the same argument again
for η(t) = γ(1 + 1/2) to conclude that γ̇(0) = η̇(1/2) = γ̇(1). �

We should point out that the first part of theorem 3.3 is a particular case of a result regarding
critical points of the restriction of E to the submanifold H1

N0,N1
(I,M) ⊆ H1(I,M) of curves joining

submanifolds N0, N1 ⊆ M : the critical points of E �H1
N0,N1

(I,M) are the geodesics γ joining N0 to
N1 with γ̇(0) ∈ Tγ(0)N

⊥
0 and γ̇(1) ∈ Tγ(1)N

⊥
1 . The proof of this result is essentially the same as

that of theorem 3.3, given that TγH1
N0,N1

(I,M) is subspace of H1 vector fields X along γ with
X0 ∈ Tγ(0)N0 and X1 ∈ Tγ(1)N1.

3.2 Second Order Derivatives of E

Having establish a clear connection between geodesics and critical points of E, the only thing we’re
missing to complete our goal of providing a modern account of the classical theory is a refurnishing of
the formula for second variation of energy. Intuitively speaking, the second variation of energy should
be a particular case of a formula for the second derivative of E. The issue we face is, of course, that
in general there is no such thing as “the second derivative” of a smooth function between manifolds.

Nevertheless, the metric of H1(I,M) allow us to discuss “the second derivative” of E in a
meaningful sense by looking at the Hessian form, which we define in the following.

Definition 3.2. Given a – possibly infinite-dimensional – Riemannian manifold N and a smooth
functional f : N −→ R, we call the symmetric tensor

d2f(X,Y ) = ∇df(X,Y ) = XY f − df∇XY

the Hessian of f .

We can now apply the classical formula for the second variation of energy to compute the Hessian
of E at a critical point.
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Theorem 3.4. If γ is a critical point of E �ΩpqM then

(d2E �ΩpqM )γ(X,Y ) =

〈
∇
dt
X,

∇
dt
Y

〉
0

− 〈RγX,Y 〉0, (2)

where Rγ : H1(γ∗TM) −→ H1(γ∗TM) is given by (RγX)t = R(Xt, γ̇(t))γ̇(t). Formula (2) also
holds for critical points of E in ΛM .
Proof. Given the symmetry of d2E, it suffices to take X ∈ TγΩpqM and show

d2Eγ(X,X) =

∥∥∥∥∇dtX
∥∥∥∥2
0

− 〈RγX,X〉0

To that end, we fix a variation {γt}t of γ with fixed endpoints and variational field X and
compute

d2Eγ(X,X) =
d2

dt2

∣∣∣∣
t=0

E(γt)

(second variation of energy) =
∫ 1

0

∥∥∥∥∇dtX
∥∥∥∥2 − 〈R(Xt, γ̇(t))γ̇(t), Xt〉 dt

=

∥∥∥∥∇dtX
∥∥∥∥2
0

− 〈RγX,X〉0

�

Next we discuss some further applications of the theory we’ve developed so far. In particular,
we will work towards Morse’s index theorem and and describe how one can apply it to establish the
Jacobi-Darboux theorem. We begin with a technical lemma, whose proof amounts to an uninspiring
exercise in analysis – see lemma 2.4.6 of [3].
Lemma 3.2. Let Ω0

pqM ⊆ C0(I,M) be the space of continuous curves joining p to q. Then the
inclusion ΩpqM ↪−→ Ω0

pqM is continuous and compact. Likewise, if M is compact and Λ0M ⊆
C0(I,M) is the space of continuous free loops then the inclusion ΛM ↪−→ Λ0M is continuous and
compact.

As a first consequence, we prove…
Proposition 3.1. Given a critical point γ of E in ΩpqM , the self-adjoint operator Aγ : TγΩpqM −→
TγΩpqM given by

〈AγX,Y 〉1 = 〈X,AγY 〉1 = d2Eγ(X,Y )

has the form Aγ = Id+Kγ where Kγ : TγΩpqM −→ TγΩpqM is a compact operator. The same
holds for ΛM if M is compact.

Proof. Consider Kγ = −
(
Id−∇2

dt2

)−1

◦ (Id+Rγ). We will show that Kγ is compact and that
Aγ = Id+Kγ for γ in both ΩpqM and ΛM – in which case assume M is compact.

Let γ ∈ ΩpqM be a critical point. By theorem 3.3 we know that γ is a geodesic. Let X,Y ∈
Γ(γ∗TM) with X0 = X1 = Y0 = Y1 = 0. Then

〈X,Y 〉1 = 〈X,Y 〉0 +
〈
∇
dt
X,

∇
dt
Y

〉
= 〈X,Y 〉0 +

∫ 1

0

〈
∇
dt
X,

∇
dt
Y

〉
dt

= 〈X,Y 〉0 +
∫ 1

0

d

dt
〈Xt, Yt〉 −

〈
∇2

dt2
X,Y

〉
dt

= 〈X,Y 〉0 −
〈
∇2

dt2
X,Y

〉
0

+ 〈Xt, Yt〉|1t=0

=

〈(
Id−∇2

dt2

)
X,Y

〉
0

(3)
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Since Γ(γ∗TM) ⊆ H1(γ∗TM) is dense, (3) extends to all of TγΩpqM . Hence given X,Y ∈
TγΩpqM we have

〈AγX,Y 〉1 =

〈
∇
dt
X,

∇
dt
Y

〉
0

− 〈RγX,Y 〉0

= 〈X,Y 〉1 − 〈X,Y 〉0 − 〈RγX,Y 〉0
= 〈X,Y 〉1 − 〈(Id+Rγ)X,Y 〉0

= 〈X,Y 〉1 −

〈(
Id−∇2

dt2

)−1

◦ (Id+Rγ)X,Y

〉
1

= 〈X,Y 〉1 + 〈KγX,Y 〉1

Now consider a critical point γ ∈ ΛM – i.e. a closed geodesic. Equation (3) also holds for
X,Y ∈ Γ(γ∗TM) with X0 = X1 and Y0 = Y1, so it holds for all X,Y ∈ TγΛM . Hence by applying
the same argument we get 〈AγX,Y 〉1 = 〈(Id+Kγ)X,Y 〉1.

As for the compactness ofKγ in the case of ΩpqM , from (3) we get ‖KγX‖21 = −〈(Id+Rγ)X,KγX〉0,
so that proposition 2.4 implies

‖KγX‖21 6 ‖Id+Rγ‖ · ‖KγX‖∞ · ‖X‖0 6
√
2 ‖Id+Rγ‖ · ‖KγX‖1 · ‖X‖0 (4)

Given a bounded sequence (Xn)n ⊆ TγΩpqM , it follow from lemma 3.2 that (Xn)n is relatively
compact as a C0-sequence. From (4) we then get that (KγXn)n is relatively compact as an H1-
sequence, as desired. The same argument holds for ΛM if M is compact – so that we can once more
apply lemma 3.2. �

Once again, the first part of this proposition is a particular case of a broader result regarding the
space of curves joining submanifolds of M : if N ⊆M is a totally geodesic manifold of codimension
1 and γ ∈ H1

N,{q}(I,M) is a critical point of the restriction of E then Aγ = Id+Kγ . These results
aren’t that appealing on their own, but they allow us to establish the following result, which is
essential for stating Morse’s index theorem.

Corollary 3.3. Given a critical point γ of E �ΩpqM , there is an orthogonal decomposition

TγΩpqM = T−
γ ΩpqM ⊕ T 0

γΩpqM ⊕ T+
γ ΩpqM,

where T−
γ ΩpqM is the finite-dimensional subspace spanned by eigenvectors with negative eigenvalues,

T 0
γΩpqM = kerAγ and T+

γ ΩpqM is the proper Hilbert subspace given by the closure of the subspace
spanned by eigenvectors with positive eigenvalues. The same holds for critical points γ of E �ΛM and
TγΛM if M is compact.

Definition 3.3. Given a critical point γ of E �ΩpqM we call the number dimT−
γ ΩpqM the Ω-index

of γ. Likewise, we call dimT−
γ ΛM for a critical point γ of E �ΛM the Λ-index of γ. Whenever the

submanifold γ lies in is clear from context we refer to the Ω-index or the Λ-index of γ simply by the
index of γ.

This definition highlights one of the greatest strengths of our approach: while the index of a
geodesic γ can be defined without the aid of the tools developed in here, by using of the Hessian
form d2Eγ we can place definition 3.3 in the broader context of Morse theory. In fact, the geodesics
problems and the energy functional where among Morse’s original proposed applications. Propo-
sition 3.1 and definition 3.3 amount to a proof that the Morse index of E at a critical point γ is
finite.

We are now ready to state Morse’s index theorem.

Theorem 3.5 (Morse). Let γ ∈ ΩpqM be a critical point of E. Then the index of γ is given of the
sum of the multiplicities of the proper conjugate points7 of γ in the interior of I.

7By “conjugate points of a geodesic γ” we of course mean points conjugate to γ(0) = p along γ.
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Unfortunately we do not have the space to include the proof of Morse’s theorem in here, but
see theorem 2.5.9 of [3]. The index theorem can be generalized for H1

N,{q}(I,M) by replacing
the notion of conjugate point with the notion of focal points of N – see theorem 7.5.4 of [1] for
the classical approach. What we are really interested in, however, is the following consequence of
Morse’s theorem.

Theorem 3.6 (Jacobi-Darboux). Let γ ∈ ΩpqM be a critical point of E.

(i) If there are no conjugate points of γ then there exists a neighborhood U ⊆ ΩpqM of γ such
that E(η) > E(γ) for all η ∈ U with η 6= γ.

(ii) Let k > 0 be the sum of the multiplicities of the conjugate points of γ in the interior of I.
Then there exists an immersion

i : Bk −→ ΩpqM

of the unit ball Bk = {v ∈ Rk : ‖v‖ < 1} with i(0) = γ, E(i(v)) < E(γ) and L(i(v)) < L(γ)
for all nonzero v ∈ Bk.

Proof. First of all notice that given η ∈ Uγ with η = expγ(X), X ∈ H1(Wγ), the Taylor series for
E(η) is given by E(η) = E(γ) + 1

2d
2Eγ(X,X) + · · ·. More precisely,∣∣E(expγ(X))− E(γ)− 1

2d
2Eγ(X,X)

∣∣
‖X‖21

−→ 0 (5)

as X −→ 0.
Let γ be as in (i). Since γ has no conjugate points, it follows from Morse’s index theorem that

T−
γ ΩpqM = 0. Furthermore, by noticing that any piece-wise smooth X ∈ kerAγ is Jacobi field

vanishing at p and q one can also show T 0
γΩpqM = 0. Hence TγΩpqM = T+

γ ΩpqM and therefore
d2E �ΩpqM is positive-definite. Now given η = expγ(X) as before, (5) implies that E(η) > E(γ),
provided ‖X‖1 is sufficiently small.

As for part (ii), fix an orthonormal basis {Xj : 1 6 j 6 k} of T−
γ ΩpqM consisting of eigenvectors

of Aγ with negative eigenvalues −λi. Let δ > 0 and define

i : Bk −→ ΩpqM

v 7−→ expγ(δ(v1 ·X1 + · · ·+ vk ·Xk))

Clearly i is an immersion for small enough δ. Moreover, from (5) and

E(i(v)) = E(γ)− 1

2
δ2
∑
j

λj · vj + · · ·

we find that E(i(v)) < E(γ) for sufficiently small δ. In particular, L(i(v))2 6 E(i(v)) < E(γ) =
L(γ)2. �

We should point out that part (i) of theorem 3.6 is weaker than the classical formulation of the
Jacobi-Darboux theorem – such as in theorem 5.5.3 of [1] for example – in two aspects. First, we do
not compare the length of curves γ and η ∈ U . This could be amended by showing that the length
functional L : H1(I,M) −→ R is smooth and that its Hessian d2Lγ is given by C · d2Eγ for some
C > 0. Secondly, unlike the classical formulation we only consider curves in an H1-neighborhood of
γ – instead of a neighborhood of γ in ΩpqM in the uniform topology. On the other hand, part (ii)
is definitively an improvement of the classical formulation: we can find curves η = i(v) shorter than
γ already in an H1-neighborhood of γ.

This concludes our discussion of the applications of our theory to the geodesics problem. We
hope that these short notes could provide the reader with a glimpse of the rich theory of the calculus
of variations and global analysis at large. We once again refer the reader to [3, ch. 2], [5, ch. 11] and
[2, sec. 6] for further insight on modern variational methods.
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