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About These Notes

Remark. Under construction!

These notes are perhaps better understood as a coming-of-age tale. They were originally part
of some notes of mine on representations of Lie groups, written in early 2021 as part of my second
scientific internship project with professor Iryna Kashuba of the department of mathematics of
the Institute of Mathematics and Statistics of the University of São Paulo (IME-USP), Brazil. These
were later adapted and expanded into my undergraduate dissertation, produced in late 2022 un-
der the supervision of professor Kashuba. In mid 2023, after the publication of my undergraduate
dissertation, the notes were once again expanded with the addition of their final chapter. All in
all, I have been working on the prose that follows for the better part of my early higher education.

As they currently stand, the subject of these notes is a select topic in the representation theory
of semisimple Lie algebras: Olivier Mathieu’s classification of simple weight modules. Its first
four chapters consist of a pretty standard account of the basic theory of semisimple Lie algebras
and their finite-dimensional representations, providing a concise exposition of the background
required for understanding the classification. On the other hand, the last two chapter of the notes
should be understood as a reading guide for Mathieu’s original paper [Mat00], with an emphasis
on the intuition behind its major results.

Throughout these notes we will follow some guiding principles. First, lengthy proofs are
favored as opposed to collections of smaller lemmas. This is a deliberate effort to emphasize
the relevant results. Secondly, and this is more important, we are primarily interested in the
broad strokes of the theory highlighted in the following chapters. This is because the topic of the
dissertation at hand is a profoundly technical one. In particular, certain proofs can sometimes
feel like an unmotivated pile of technical arguments. Instead, we prefer to focus on the intuition
behind the relevant results.

Hence some results are left unproved. Nevertheless, we include numerous references through-
out the text to other materials where the reader can find complete proofs. We will assume basic
knowledge of abstract algebra. In particular, we assume that the reader is familiarized with multi-
linear algebra, the theory of modules over an algebra and exact sequences. We also assume famil-
iarity with the language of categories, functors and adjunctions. Understanding some examples
in the introductory chapter requires basic knowledge of differential and algebraic geometry, as
well as rings of differential operators, but these examples are not necessary to the comprehension
of the notes as a whole. Additional topics will be covered in the notes as needed.
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Chapter 1

Introduction

Associative algebras have proven themselves remarkably useful throughout mathematics. There
is no lack of natural and interesting examples coming from a diverse spectrum of different fields:
topology, number theory, analysis, you name it. Associative algebras have thus been studied at
length, specially the commutative ones. On the other hand, non-associative algebras have never
sustained the same degree of scrutiny. To this day, non-associative algebras remain remarkably
mysterious. Many have given up on attempting a systematic investigation and focus instead
on understanding particular classes of non-associative algebras – i.e. algebras satisfying pseudo-
associativity conditions.

Perhaps the most fascinating class of non-associative algebras are the so called Lie algebras, and
these will be the focus of these notes.

Definition 1.1. Given a field K, a Lie algebra over K is a K-vector space g endowed with an
antisymmetric bilinear map [ , ] : g× g −→ g – which we call its Lie bracket – satisfying the
Jacobi identity

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Definition 1.2. Given two Lie algebras g and h over K, a homomorphism of Lie algebras
g −→ h is a K-linear map f : g −→ h which preserves bracket in the sense that

f ([X, Y]) = [ f (X), f (Y)]

for all X, Y ∈ g. The dimension dim g of g is its dimension as a K-vector space.

The collection of Lie algebras over a fixed field K thus form a category, which we call K-LieAlg.
We are primarily interested in finite-dimensional Lie algebras over algebraically closed fields of
characteristic 0. Hence from now on we assume K is algebraically closed and char K = 0 unless
explicitly stated otherwise. Ironically, perhaps the most basic examples of Lie algebras are derived
from associative algebras.

Example 1.3. Given an associative K-algebra A, we can view A as a Lie algebra over K with the
Lie bracket given by the commutator [a, b] = ab − ba. In particular, given a K-vector space V we
may view the K-algebra End(V) as a Lie algebra, which we call gl(V). We may also regard the Lie
algebra gln(K) = gl(Kn) as the space of n × n matrices with coefficients in K.

Example 1.4. Let n 6 m. Then the map

gln(K) −→ glm(K)

X 7−→
(

X 0
0 0

)

1



2 Chapter 1. Introduction

is a homomorphism of Lie algebras.

While straightforward enough, I always found the definition of a Lie algebra unconvincing on
its own. Specifically, the Jacobi identity can look very alien to someone who has never ventured
outside of the realms of associativity. Traditional abstract algebra courses offer little in the way of a
motivation for studying non-associative algebras in general. Why should we drop the assumption
of associativity if every example of an algebraic structure we have ever seen is an associative one?
Instead, the most natural examples of Lie algebras often come from an entirely different field:
geometry.

Here the meaning of geometry is somewhat vague. Topics such as differential and algebraic
geometry are prominently featured, but examples from fields such as the theory of differential
operators and D-modules also show up a lot in the theory of representations – which we will
soon discuss. Perhaps one of the most fundamental themes of the study of Lie algebras is their
relationship with groups, specially in geometric contexts. We will now provide a brief description
of this relationship through a series of examples.

Example 1.5. Let A be an associative K-algebra and Der(A) be the space of all derivations on
A – i.e. all linear maps D : A −→ A satisfying the Leibniz rule D(a · b) = a · Db + (Da) ·
b. The commutator [D, D′] of two derivations D, D′ ∈ Der(A) in the ring End(A) of K-linear
endomorphisms of A is a derivation. Hence Der(A) is a Lie algebra.

One specific instance of this last example is. . .

Example 1.6. Given a smooth manifold M, the space X(M) of all smooth vector fields is canoni-
cally identified with Der(M) = Der(C∞(M)) – where a field X ∈ X(M) is identified with the map
C∞(M) −→ C∞(M) which takes a function f ∈ C∞(M) to its derivative in the direction of X. This
gives X(M) the structure of a Lie algebra over R.

Example 1.7. Given a Lie group G – i.e. a smooth manifold endowed with smooth group opera-
tions – we call X ∈ X(G) left invariant if (d`g)1X1 = Xg for all g ∈ G, where `g : G −→ G denotes
the left translation by g. The commutator of invariant fields is invariant, so the space g = Lie(G) of
all invariant vector fields has the structure of a Lie algebra over R with bracket given by the usual
commutator of fields. Notice that an invariant field X is completely determined by X1 ∈ T1G.
Hence there is a linear isomorphism g

∼−−→ T1G. In particular, g is finite-dimensional.

We should point out that the Lie algebra g of a complex Lie group G – i.e. a complex manifold
endowed with holomorphic group operations – has the natural structure of a complex Lie algebra.
Indeed, every left invariant field X ∈ X(G) is holomorphic, so g is a (complex) subspace of the
complex vector space of holomorphic vector fields over G. There is also an algebraic analogue of
this last construction.

Example 1.8. Let G be an affine algebraic K-group – i.e. an affine variety over K with rational
group operations – and K[G] denote the ring of regular functions G −→ K. We call a derivation
D : K[G] −→ K[G] left invariant if D(g · f ) = g · D f for all g ∈ G and f ∈ K[G] – where the action
of G on K[G] is given by (g · f )(h) = f (g−1h). The commutator of left invariant derivations is
invariant too, so the space Lie(G) = Der(G)G of invariant derivations in K[G] has the structure
of a Lie algebra over K with bracket given by the commutator of derivations. Again, Lie(G) is
isomorphic to the Zariski tangent space T1G, which is finite-dimensional.

Example 1.9. The Lie algebra Lie(GLn(K)) is canonically isomorphic to the Lie algebra gln(K).
Likewise, the Lie algebra Lie(SLn(K)) is canonically isomorphic to the Lie algebra sln(K) of trace-
less n × n matrices.

sln(K) = {X ∈ gln(K) : Tr X = 0}

Example 1.10. The elements

e =
(

0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
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form a basis for sl2(K) and are subject to the following relations.

[e, f ] = h [h, f ] = −2 f [h, e] = 2e

Example 1.11. The Lie algebra of the affine algebraic group

Sp2n(K) = {g ∈ GL2n(K) : ω(g · v, g · w) = ω(v, w) ∀v, w ∈ K2n}

is canonically isomorphic to the Lie algebra

sp2n(K) =
{(

X Y
Z −X>

)
: X, Y, Z ∈ gln(K), Y = Y>, Z = Z>

}
,

with bracket given by the usual commutator of matrices – where

ω((v1, . . . , vn, v̇1, . . . , v̇n), (w1, . . . , wn, ẇ1, . . . , ẇn)) = v1ẇ1 + · · ·+ vnẇn − v̇1w1 − · · · − v̇nwn

is, of course, the standard symplectic form of K2n.

It is important to point out that the construction of the Lie algebra g of a Lie group G in
Example 1.7 is functorial. Specifically, one can show the derivative d f1 : g ∼= T1G −→ T1H ∼= h of
a smooth group homomorphism f : G −→ H is a homomorphism of Lie algebras, and the chain
rule implies d( f ◦ g)1 = d f1 ◦ dg1. This is known as the the Lie functor Lie : LieGrp −→ R-LieAlg
between the category of Lie groups and smooth group homomorphisms and the category of Lie
algebras.

This goes to show Lie algebras are invariants of Lie groups. What is perhaps more surprising
is the fact that, in certain contexts, Lie algebras are perfect invariants. Even more so. . .

Theorem 1.12 (Lie). The restriction Lie : LieGrpsimpl −→ R-LieAlg of the Lie functor to
the full subcategory of simply connected Lie groups is an equivalence of categories onto the full
subcategory of finite-dimensional real Lie algebras.

This last theorem is a direct corollary of the so called first and third fundamental Lie Theorems.
Lie’s first Theorem establishes that if G is a simply connected Lie group and H is a connected Lie
group then the induced map Hom(G, H) −→ Hom(g, h) is bijective, which implies the Lie functor
is fully faithful. On the other hand, Lie’s third Theorem states that every finite-dimensional real
Lie algebra is the Lie algebra of a simply connected Lie group – i.e. the Lie functor is essentially
surjective.

This goes to show that the relationship between Lie groups and Lie algebras is deeper than the
fact they share a name: in a very strong sense, studying simply connected Lie groups is precisely
the same as studying finite-dimensional Lie algebras. Such a vital connection between apparently
distant subjects is bound to produce interesting results. Indeed, the passage from the geometric
setting to its algebraic counterpart and vice-versa has proven itself a fruitful one.

This correspondence can be extended to the complex case too. In other words, the Lie functor
CLieGrpsimpl −→ C-LieAlg is also an equivalence of categories between the category of simply
connected complex Lie groups and the full subcategory of finite-dimensional complex Lie alge-
bras. The situation is more delicate in the algebraic case. For instance, consider the complex Lie
algebra homomorphism

f : C −→ sl2(C)

λ 7−→ λh =

(
λ 0
0 −λ

)
Since sl2(C) = Lie(SL2(C)) and SL2(C) is simply connected, we know there exists a unique

holomorphic group homomorphism g : C −→ SL2(C) between the affine line C and the complex
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algebraic group SL2(C) such that f = dg1. Indeed, this homomorphism is

g : C −→ SL2(C)

λ 7−→ exp(λh) =
(

eλ 0
0 e−λ

)
,

which is not a rational map. It then follows from the uniqueness of g that there is no rational
group homomorphism C −→ SL2(C) whose derivative at the identity is f .

In particular, the Lie functor C-Grpsimpl −→ C-LieAlg – between the category C-Grpsimpl of
simply connected complex algebraic groups and the category of complex Lie algebras – fails to be
full. Similarly, the functor C-Grpsimpl −→ C-LieAlg is not essentially surjective onto the subcate-
gory of finite-dimensional algebras: every finite-dimensional complex Lie algebra is isomorphic to
the Lie algebra of a unique simply connected complex Lie group, but there are simply connected
complex Lie groups which are not algebraic groups. Nevertheless, Lie algebras are still powerful
invariants of algebraic groups. An interesting discussion of some of these delicacies can be found
in sixth section of [DG70, ch. II].

All in all, there is a profound connection between groups and finite-dimensional Lie algebras
throughout multiple fields. While perhaps unintuitive at first, the advantages of working with
Lie algebras over their group-theoretic counterparts are numerous. First, Lie algebras allow us
to avoid much of the delicacies of geometric objects such as real and complex Lie groups. Even
when working without additional geometric considerations, groups can be complicated beasts
themselves. They are, after all, nonlinear objects. On the other hand, Lie algebras are linear by
nature, which makes them much more flexible than groups.

Having thus hopefully established that Lie algebras are interesting, we are now ready to dive
deeper into them. We begin by analyzing some of their most basic properties.

1.1 Lie Algebras

However bizarre Lie algebras may seem at a first glance, they actually share a lot a structural
features with their associative counterparts. For instance, it is only natural to define. . .

Definition 1.13. Given a Lie algebra g, a subspace h ⊆ g is called a subalgebra of g if [X, Y] ∈
h for all X, Y ∈ h. A subalgebra a ⊆ g is called an ideal of g if [X, Y] ∈ a for all X ∈ g and
Y ∈ a, in which case we write a / g.

Remark. In the context of associative algebras, it is usual practice to distinguish between left ideals
and right ideals. This is not necessary when dealing with Lie algebras, however, since any “left
ideal” of a Lie algebra is also a “right ideal”: given a / g, [Y, X] = −[X, Y] ∈ a for all X ∈ g and
Y ∈ a.

Example 1.14. Let f : g −→ h be a homomorphism between Lie algebras g and h. Then ker f ⊆ g
and im f ⊆ h are subalgebras. Furthermore, ker f / g.

Example 1.15. Let g1 and g2 be a Lie algebras over K. Then the space g1 ⊕ g2 is a Lie algebra with
bracket

[X1 + X2, Y1 + Y2] = [X1, Y1] + [X2, Y2],

and g1, g2 / g1 ⊕ g2.

Example 1.16. Let G be an affine algebraic K-group and H ⊆ G be a connected closed subgroup.
Denote by g and h the Lie algebras of G and H, respectively. The inclusion H −→ G induces an
injective homomorphism h −→ g. We may thus regard h as a subalgebra of g. In addition, h / g if,
and only if H / G.
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There is also a natural analogue of quotients.

Definition 1.17. Given a Lie algebra g and a / g, the space g/a has the natural structure of
a Lie algebra over K, where

[X + a, Y + a] = [X, Y] + a

Proposition 1.18. Given a Lie algebra g and a / g, every homomorphism of Lie algebras f : g −→ h
such that a ⊆ ker f uniquely factors through the projection g −→ g/a.

g h

g/a

f

Definition 1.19. A Lie algebra g is called Abelian if [X, Y] = 0 for all X, Y ∈ g.

Example 1.20. Let G be a connected algebraic K-group and g be its Lie algebra. Then G is Abelian
if, and only if g is Abelian.

Remark. Notice that an Abelian Lie algebra is determined by its dimension. Indeed, any linear
map g −→ h between Abelian Lie algebras g and h is a homomorphism of Lie algebras. In
particular, any linear isomorphism g

∼−−→ Kn – where Kn is endowed with the trivial bracket
[v, w] = 0, v, w ∈ Kn – is an isomorphism of Lie algebras for Abelian g.

Example 1.21. Let g be a Lie algebra and z = {X ∈ g : [X, Y] = 0, Y ∈ g}. Then z is an Abelian
ideal of g, known as the center of z.

Due to their relationship with Lie groups and algebraic groups, Lie algebras also share struc-
tural features with groups. For example. . .

Definition 1.22. A Lie algebra g is called solvable if its derived series

g ⊇ [g, g] ⊇ [[g, g], [g, g]] ⊇ [[[g, g], [g, g]], [[g, g], [g, g]]] ⊇ · · ·

converges to 0 in finite time.

Example 1.23. Let G be a connected affine algebraic K-group and g be its Lie algebra. Then G is
solvable if, and only if g is.

Definition 1.24. A Lie algebra g is called nilpotent if its lower central series

g ⊇ [g, g] ⊇ [g, [g, g]] ⊇ [g, [g, [g, g]]] ⊇ · · ·

converges to 0 in finite time.

Example 1.25. Let G be a connected affine algebraic K-group and g be its Lie algebra. Then G is
nilpotent if, and only if g is.

Other interesting classes of Lie algebras are the so called simple and semisimple Lie algebras.

Definition 1.26. A non-Abelian Lie algebra s over K is called simple if its only ideals are 0
and s.
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Example 1.27. The Lie algebra sl2(K) is simple. To see this, notice that any ideal a / sl2(K) must
be stable under the operator ad(h) : sl2(K) −→ sl2(K) given by ad(h)X = [h, X]. But Example 1.10
implies ad(h) is diagonalizable, with eigenvalues 0 and ±2. Hence a must be spanned by some of
the eigenvectors e, f , h of ad(h). If h ∈ a, then [e, h] = −2e ∈ a and [ f , h] = 2 f ∈ a, so a = sl2(K).
If e ∈ a then [ f , e] = −h ∈ a, so again a = sl2(K). Similarly, if f ∈ a then [e, f ] = h ∈ a and
a = sl2(K). More generally, the Lie algebra sln(K) is simple for each n > 1 – see the section of
[Kir08, ch. 6] on invariant bilinear forms and the semisimplicity of classical Lie algebras.

Example 1.28. The Lie algebras sp2n(K) are simple for all n > 1 – agina, see [Kir08, ch. 6].

Definition 1.29. A Lie algebra g is called semisimple if it is the direct sum of simple Lie
algebras. Equivalently, a Lie algebra g is called semisimple if it has no nonzero solvable
ideals.

Example 1.30. Let G be a connected affine algebraic K-group. Then G is semisimple if, and only
if g semisimple.

A slight generalization is. . .

Definition 1.31. A Lie algebra g is called reductive if g is the direct sum of a semisimple Lie
algebra and an Abelian Lie algebra.

Example 1.32. The Lie algebra gln(K) is reductive. Indeed,

X =


a11 − Tr(X)

n · · · a1n
...

. . .
...

an1 · · · ann − Tr(X)
n

+


Tr(X)

n · · · 0
...

. . .
...

0 · · · Tr(X)
n


for each matrix X = (aij)ij. In other words, gln(K) = sln(K)⊕ K Id ∼= sln(K)⊕ K.

As suggested by their names, simple and semisimple algebras are quite well behaved when
compared with the general case. To a lesser degree, reductive algebras are also unusually well
behaved. In the next chapter we will explore the question of why this is the case, but for now we
note that we can get semisimple and reductive algebras by modding out by certain ideals, known
as radicals.

Definition 1.33. Let g be a finite-dimensional Lie algebra. The sum a+ b of solvable ideals
a, b / g is again a solvable ideal. Hence the sum of all solvable ideals of g is a maximal
solvable ideal, known as the radical rad(g) of g.

rad(g) = ∑
a/g

solvable

a

Definition 1.34. Let g be a finite-dimensional Lie algebra. The sum of nilpotent ideals is
a nilpotent ideal. Hence the sum of all nilpotent ideals of g is a maximal nilpotent ideal,
known as the nilradical nil(g) of g.

nil(g) = ∑
a/g

nilpotent

a

Proposition 1.35. Let g be a Lie algebra. Then g/rad(g) is semisimple and g/nil(g) is reductive.
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We have seen in Example 1.3 that we can pass from an associative algebra A to a Lie algebra by
taking its bracket as the commutator [a, b] = ab − ba. We should also not that any homomorphism
of K-algebras f : A −→ B preserves commutators, so that f is also a homomorphism of Lie
algebras. Hence we have a functor Lie : K-Alg −→ K-LieAlg. We can also go the other direction
by embedding a Lie algebra g in an associative algebra, known as the universal enveloping algebra of
g.

Definition 1.36. Let g be a Lie algebra and Tg =
⊕

n g
⊗n be its tensor algebra – i.e. the

free K-algebra generated by the elements of g. We call the K-algebra U(g) = Tg/I the
universal enveloping algebra of g, where I is the left ideal of Tg generated by the elements
[X, Y]− (X ⊗ Y − Y ⊗ X).

Notice there is a canonical homomorphism g −→ U(g) given by the composition

g Tg Tg/I = U(g)

Given X1, . . . , Xn ∈ g, we identify Xi with its image under the inclusion g −→ Tg and we write
X1 · · · Xn for (X1 ⊗ · · · ⊗ Xn) + I. This notation suggests the map g −→ U(g) is injective, but at
this point this is not at all clear – given that the projection Tg −→ U(g) is not injective. However,
we will soon see this is the case. Intuitively, U(g) is the smallest associative K-algebra containing
g as a Lie subalgebra. In practice this means. . .

Proposition 1.37. Let g be a Lie algebra and A be an associative K-algebra. Then every homomor-
phism of Lie algebras f : g −→ A – where A is endowed with the structure of a Lie algebra as in
Example 1.3 – can be uniquely extended to a homomorphism of algebras U(g) −→ A.

g A

U(g)

f

Proof. Let f : g −→ A be a homomorphism of Lie algebras. By the universal property of free
algebras, there is a homomorphism of algebras f̃ : Tg −→ A such that

g A

Tg

f

f̃

Since f is a homomorphism of Lie algebras,

f̃ ([X, Y]) = f ([X, Y]) = [ f (X), f (Y)] = [ f̃ (X), f̃ (Y)] = f̃ (X ⊗ Y − Y ⊗ X)

for all X, Y ∈ g. Hence I = ([X, Y]− (X ⊗ Y − Y ⊗ X) : X, Y ∈ g) ⊆ ker f̃ and therefore f̃ factors
through the quotient U(g) = Tg/I.

Tg A

U(g)

f̃

¯̃f

Combining the two previous diagrams, we can see that ¯̃f is indeed an extension of f . The
uniqueness of the extension then follows from the uniqueness of f̃ and ¯̃f . �
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We should point out this construction is functorial. Indeed, if f : g −→ h is a homomorphism of
Lie algebras then Proposition 1.37 implies there is a homomorphism of algebras U( f ) : U(g) −→
U(h) satisfying

g h U(h)

U(g)

f

U( f )

It is important to note, however, that U : K-LieAlg −→ K-Alg is not the “inverse” of our
functor K-Alg −→ K-LieAlg. For instance, if g = K is the 1-dimensional Abelian Lie algebra then
U(g) ∼= K[x], which is infinite-dimensional. Nevertheless, Proposition 1.37 may be restated using
the language of adjoint functors – as described in [Mac71] for instance.

Corollary 1.38. If Lie : K-Alg −→ K-LieAlg is the functor described in Example 1.3, there is an
adjunction Lie ` U.

The structure of U(g) can often be described in terms of the structure of g. For instance, g
is Abelian if, and only if U(g) is commutative, in which case any basis {Xi}i for g induces an
isomorphism U(g) ∼= K[x1, x2, . . . , xi, . . .]. More generally, we find. . .

Theorem 1.39 (Poincaré-Birkoff-Witt). Let g be a Lie algebra over K and {Xi}i ⊆ g be an ordered
basis for g – i.e. a basis indexed by an ordered set. Then {Xi1 · Xi2 · · · Xin : n > 0, i1 6 i2 6 · · · 6
in} is a basis for U(g).

This last result is known as the PBW Theorem. It is hugely important and will come up again
and again throughout these notes. Among other things, it implies. . .

Corollary 1.40. Let g be a Lie algebra over K. Then U(g) is a domain and the inclusion g −→
U(g) is injective.

The PBW Theorem can also be used to compute a series of examples.

Example 1.41. Consider the Lie algebra gln(K) and its canonical basis {Eij}ij. Even though
EijEjk = Eik in the associative algebra End(Kn), the PBW Theorem implies EijEjk 6= Eik in
U(gln(K)). In general, if A is an associative K-algebra then the elements in the image of the
inclusion A −→ U(A) do not satisfy the same relations as the elements of A.

Example 1.42. Let g be an Abelian Lie algebra. As previously stated, any choice of basis {Xi}i ⊆ g

induces an isomorphism of algebras U(g)
∼−−→ K[x1, x2, . . . , xi, . . .] which takes Xi ∈ g to the

variable xi ∈ K[x1, x2, . . . , xi, . . .].

Example 1.43. Let g1 and g2 be Lie algebras over K. We claim that the natural map

f : U(g1)⊗K U(g2) −→ U(g1 ⊕ g2)

u ⊗ v 7−→ u · v

is an isomorphism of algebras. Since the elements of g1 commute with the elements of g2 in
g1 ⊕ g2, a simple calculation shows that f is indeed a homomorphism of algebras. In addition, the
PBW Theorem implies that f is a linear isomorphism.

The construction of U(g) may seem like a purely algebraic affair, but the universal enveloping
algebra of the Lie algebra of a Lie group G is in fact intimately related with the algebra Diff(G)
of differential operators C∞(G) −→ C∞(G) – i.e. R-linear endomorphisms C∞(G) −→ C∞(G) of
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finite order, as defined in [C C95, ch. 3] for example. Algebras of differential operators and their
modules are the subject of the theory of D-modules, which has seen remarkable progress in the
past century. Specifically, we find. . .

Proposition 1.44. Let G be a Lie group and g be its Lie algebra. Denote by Diff(G)G the algebra of
G-invariant differential operators in G – i.e. the algebra of all differential operators P : C∞(G) −→
C∞(G) such that g · P f = P(g · f ) for all f ∈ C∞(G) and g ∈ G. There is a canonical isomorphism
of algebras U(g)

∼−−→ Diff(G)G.

Proof. An order 0 G-invariant differential operator in G is simply multiplication by a constant in R.
A homogeneous order 1 G-invariant differential operator in G is simply a left invariant derivation
C∞(G) −→ C∞(G). All other G-invariant differential operators are generated by invariant oper-
ators of order 0 and 1. Hence Diff(G)G is generated by Der(G)G + R – here Der(G)G ⊆ Der(G)
denotes the Lie subalgebra of invariant derivations.

Now recall that there is a canonical isomorphism of Lie algebras X(G)
∼−−→ Der(G). This iso-

morphism takes left invariant fields to left invariant derivations, so it restricts to an isomorphism
f : g ∼−−→ Der(G)G ⊆ Diff(G)G. Since f is a homomorphism of Lie algebras, it can be extended to
an algebra homomorphism f̃ : U(g) −→ Diff(G)G. We claim f̃ is an isomorphism.

To see that f̃ is injective, it suffices to notice

f̃ (X1 · · · Xn) = f̃ (X1) · · · f̃ (Xn) = f (X1) · · · f (Xn) 6= 0

for all nonzero X1, . . . , Xn ∈ g – the product of operators of positive order has positive order
and is therefore nonzero. Since U(g) is generated by the image of the inclusion g −→ U(g), this
implies ker f̃ = 0. Given that Diff(G)G is generated by Der(G)G + R, this also goes to show f̃ is
surjective. �

As one would expect, the same holds for complex Lie groups and algebraic groups too – if we
replace C∞(G) by O(G) and K[G], respectively. This last proposition has profound implications.
For example, it affords us an analytic proof of certain particular cases of the PBW Theorem. Most
surprising of all, Proposition 1.44 implies U(g)-modules are precisely the same as modules over
the ring of G-invariant differential operators – i.e. Diff(G)G-modules. We can thus use U(g) and
its modules to understand the geometry of G.

Proposition 1.44 is in fact only the beginning of a profound connection between the theory of
D-modules and representation theory, the latter of which we now explore in the following section.

1.2 Representation Theory

First introduced in 1896 by Georg Frobenius in his paper “Über Gruppencharakteren” [Fro96]
in the context of group theory, representation theory is now one of the cornerstones of modern
mathematics. In this section we provide a brief overview of basic concepts of the representation
theory of Lie algebras. We should stress, however, that the representation theory of Lie algebras
is only a small fragment of what is today known as “representation theory”, which is in general
concerned with a diverse spectrum of algebraic and combinatorial structures – such as groups,
quivers and associative algebras. An introductory exploration of some of these structures can be
found in [Eti+11].

We begin by noting that any U(g)-module M may be regarded as a K-vector space endowed
with a “linear action” of g. Indeed, by restricting the action map U(g) −→ End(M) to g ⊆ U(g)
yields a homomorphism of Lie algebras g −→ gl(M) = End(M). In fact Proposition 1.37 implies
that given a vector space M there is a one-to-one correspondence between U(g)-module structures
for M and homomorphisms g −→ gl(M). This leads us to the following definition.
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Definition 1.45. Given a Lie algebra g over K, a representation V of g is a K-vector space
endowed with a homomorphism of Lie algebras ρ : g −→ gl(V).

Hence there is a one-to-one correspondence between representations of g and U(g)-modules.

Example 1.46. Given a Lie algebra g, the zero map 0 : g −→ K gives K the structure of a represen-
tation of g, known as the trivial representation.

Example 1.47. Given a Lie algebra g, consider the homomorphism ad : g −→ gl(g) given by
ad(X)Y = [X, Y]. This gives g the structure of a representation of g, known as the adjoint represen-
tation.

Example 1.48. Given a Lie algebra g, the map ρ : g −→ gl(U(g)) given by left multiplication
endows U(g) with the structure of a representation of g, known as the regular representation of g.

ρ : g −→ gl(U(g))
X 7−→ ρ(X) : U(g) −→ U(g)

u 7−→ X · u

Example 1.49. Given a subalgebra g ⊆ gln(K), the inclusion g −→ gln(K) endows Kn with the
structure of a representation of g, known as the natural representation of g.

When the map ρ : g −→ gl(V) is clear from context it is usual practice to denote the K-
endomorphism ρ(X) : V −→ V, X ∈ g, simply by X �V . This leads us to the natural notion of
transformations between representations.

Definition 1.50. Given a Lie algebra g and two representations V and W of g, we call a
K-linear map f : V −→ W an intertwining operator, or an intertwiner, if it commutes with the
action of g on V and W, in the sense that the diagram

V W

V W

f

X�V X�W

f

commutes for all X ∈ g. We denote the space of all intertwiners V −→ W by Homg(V, W)
– as opposed the space Hom(V, W) of all K-linear maps V −→ W.

The collection of representations of a fixed Lie algebra g thus forms a category, which we
call Rep(g). This allow us formulate the correspondence between representations of g and U(g)-
modules in more precise terms.

Proposition 1.51. There is a natural isomorphism of categories Rep(g) ∼−−→ U(g)-Mod.

Proof. We have seen that given a K-vector space M there is a one-to-one correspondence between g-
representation structures for M – i.e. homomorphisms g −→ gl(M) – and U(g)-module structures
for M – i.e. homomorphisms U(g) −→ End(M). This gives us a surjective map that takes objects
in Rep(g) to objects in U(g)-Mod.

As for the corresponding maps Homg(M, N) −→ HomU(g)(M, N), it suffices to note that a K-
linear map between representations M and N is an intertwiner if, and only if it is a homomorphism
of U(g)-modules. Our functor thus takes an intertwiner M −→ N to itself. It should then be clear
that our functor Rep(g) −→ g-Mod is invertible. �



§1.2. Representation Theory 11

The language of representation is thus equivalent to that of U(g)-modules, which we call g-
modules. Correspondingly, we refer to the category U(g)-Mod as g-Mod. The terms g-submodule
and g-homomorphism should also be self-explanatory. To avoid any confusion, we will, for the most
part, exclusively use the language of g-modules. It should be noted, however, that both points of
view are profitable.

For starters, the notation for g-modules is much cleaner than that of representations: it is
much easier to write “X · m” than “(ρ(X))(m)” or even “X �M (m)”. By using the language of
g-modules we can also rely on the general theory of modules over associative algebras – which
we assume the reader is already familiarized with. On the other hand, it is usually easier to
express geometric considerations in terms of the language representations, particularly in group
representation theory.

Often times it is easier to define a g-module M in terms of the corresponding map g −→ gl(M)
– this is technique we will use throughout the text. In general, the equivalence between both
languages makes it clear that to understand the action of U(g) on M it suffices to understand the
action of g ⊆ U(g). For instance, for defining a g-module M it suffices to define the action of
each X ∈ g and verify this action respects the commutator relations of g – indeed, g generates
U(g) as an algebra, and the only relations between elements of g are the ones derived from the
commutator relations.

Example 1.52. The space K[x, y] is a sl2(K)-module with

e · p = x
d

dy
p f · p = y

d
dx

p h · p =

(
x

d
dx

− y
d

dy

)
p

Example 1.53. Given a Lie algebra g and g-modules M and N, the space Hom(M, N) of K-linear
maps M −→ N is a g-module where (X · f )(m) = X · f (m) − f (X · m) for all X ∈ g and f ∈
Hom(M, N). In particular, if we take N = K the trivial g-module, we can view M∗ – the dual
of M in the category of K-vector spaces – as a g-module where (X · f )(m) = − f (X · m) for all
f : M −→ K.

The fundamental problem of representation theory is a simple one: classifying all representa-
tions of a given Lie algebra up to isomorphism. However, understanding the relationship between
representations is also of huge importance. In other words, to understand the whole of g-Mod we
need to study the collective behavior of representations – as opposed to individual examples. For
instance, we may consider g-submodules, quotients and tensor products.

Example 1.54. Let K[x, y] be the sl2(K)-module as in Example 1.52. Since e, f and h all preserve
the degree of monomials, the space K[x, y](d) =

⊕
k+`=d Kxky` of homogeneous polynomials of

degree d is a finite-dimensional sl2(K)-submodule of K[x, y].

Example 1.55. Given a Lie algebra g, a g-module M and m ∈ M, the subspace U(g) · m = {u · m :
u ∈ U(g)} is a g-submodule of M, which we call the submodule generated by m.

Example 1.56. Given a Lie algebra g and g-modules M and N, the space M ⊗ N = M ⊗K N is
a g-module where X · (m ⊗ n) = X · m ⊗ n + m ⊗ X · n. The exterior and symmetric products
M ∧ N and M � N are both quotients of M ⊗ N by g-submodules. In particular, the exterior and
symmetric powers ∧r M and Symr M are g-modules.

Remark. We would like to stress that the monoidal structure of g-Mod we’ve just described is
not given by the usual tensor product of modules. In other words, M ⊗ N is not the same as
M ⊗U(g) N.

It is also interesting to consider the relationship between representations of separate algebras.
In particular, we may define. . .

Example 1.57. Let g be a Lie algebra and h be a subalgebra. Given a g-module M, denote by
Resgh M = M the h-module where the action of h is given by restricting the map g −→ gl(M) to
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h. Any homomorphism of g-modules M −→ N is also a homomorphism of h-modules and this
construction is clearly functorial.

Resgh : g-Mod −→ h-Mod

Example 1.58. Given a Lie algebra g, the adjoint g-module is a submodule of the restriction of
the adjoint U(g)-module – where we consider U(g) a Lie algebra as in Example 1.3, not as an
associative algebra – to g.

Surprisingly, this functor has a right adjoint.

Example 1.59. Let g be a Lie algebra and h be a subalgebra. Given a h-module M, let Indg
h M =

U(g)⊗U(h) M – where the right h-module structure of U(g) is given by right multiplication. Any
h-homomorphism f : M −→ N induces a g-homomorphism Indg

h f = id⊗ f : Indg
h M −→ Indg

h N
and this construction is clearly functorial.

Indg
h : h-Mod −→ g-Mod

Proposition 1.60. Given a Lie algebra g, a subalgebra h ⊆ g, a h-module M and a g-module N,
the map

α : Homg(Indg
h M, N) −→ Homh(M, Resgh N)

f 7−→ α( f ) : M −→ Resgh N
m 7−→ f (1 ⊗ m)

is a K-linear isomorphism. In other words, there is an adjunction Resgh ` Indg
h.

Proof. It suffices to note that the map

β : Homh(M, Resgh N) −→ Homg(Indg
h M, N)

f 7−→ β( f ) : Indg
h M −→ N

u ⊗ m 7−→ u · f (m)

is the inverse of α. �

This last proposition is known as Frobenius reciprocity, and was first proved by Frobenius him-
self in the context of finite groups. Another interesting construction is. . .

Example 1.61. Given two K-algebras A and B, an A-module M and a B-module N, M ⊗ N =
M ⊗K N has the natural structure of an A ⊗K B-module. In light of Example 1.43, this implies that
given Lie algebras g1 and g2, a g1-module M1 and a g2-module M2, the space M1 ⊗ M2 has the
natural structure of a g1 ⊕ g2-module, where the action of g1 ⊕ g2 is given by

(X1 + X2) · (m ⊗ n) = X1 · m ⊗ n + m ⊗ X2 · n

Example 1.61 thus provides a way to describe representations of g1 ⊕ g2 in terms of the repre-
sentations of g1 and g2. We will soon see that in many cases all (simple) g1 ⊕ g2-modules can be
constructed in such a manner. This concludes our initial remarks on g-modules. In the following
chapters we will explore the fundamental problem of representation theory: that of classifying all
representations of a given algebra up to isomorphism.



Chapter 2

Semisimplicity & Complete
Reducibility

Having hopefully established in the previous chapter that Lie algebras and their representations
are indeed useful, we are now faced with the Herculean task of trying to understand them. We
have seen that representations can be used to derive geometric information about groups, but the
question remains: how do we go about classifying the representations of a given Lie algebra? This
question has sparked an entire field of research, and we cannot hope to provide a comprehensive
answer in the 65 pages we have left. Nevertheless, we can work on particular cases.

For instance, one can readily check that a Kn-module M – here Kn denotes the n-dimensional
Abelian Lie algebra – is nothing more than a choice of n commuting operators M −→ M –
corresponding to the action of the canonical basis elements e1, . . . , en ∈ Kn. In particular, a 1-
dimensional Kn-module is just a choice of n scalars λ1, . . . , λn. Different choices of scalars yield
non-isomorphic modules, so that the 1-dimensional Kn-modules are parameterized by points in
Kn.

This goes to show that classifying the representations of Abelian algebras is not that interesting
of a problem. Instead, we focus on a less trivial, yet reasonably well behaved case: the finite-
dimensional modules of a finite-dimensional semisimple Lie algebra g over an algebraically closed
field K of characteristic 0. But why are the modules of a semisimple Lie algebras simpler – or
perhaps semisimpler – to understand than those of any old Lie algebra? We will get back to this
question in a moment, but for now we simply note that, when solving a classification problem, it
is often profitable to break down our structure is smaller pieces. This leads us to the following
definitions.

Definition 2.1. A g-module is called indecomposable if it is not isomorphic to the direct sum
of two nonzero g-modules.

Definition 2.2. A g-module is called simple if it has no nonzero proper g-modules.

Example 2.3. The trivial g-module K is an example of a simple g-module. In fact, every 1-
dimensional g-module M is simple: M has no nonzero proper K-subspaces, let alone g-submodules.

Example 2.4. Given a finite-dimensional simple g1-module M1 and a finite-dimensional simple
g2-module M2, the tensor product M1 ⊗ M2 is a simple g1 ⊕ g2-module. All finite-dimensional
simple g1 ⊕ g2-modules have the form M1 ⊗ M2 for unique (up to isomorphism) M1 and M2. In
light of Example 1.43, this is a particular case of the fact that, given K-algebras A and B, all finite-
dimensional simple A ⊗K B-modules are given tensor products of simple A-modules with simple
B-modules – see [Eti+11, ch. 3].

13
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The general strategy for classifying finite-dimensional modules over an algebra is to classify
the indecomposable modules. This is because. . .

Theorem 2.5 (Krull-Schmidt). Let g be a Lie algebra. Then every finite-dimensional g-module
can be uniquely – up to isomorphisms and reordering of the summands – decomposed into a direct
sum of indecomposable g-modules.

Hence finding the indecomposable g-modules suffices to find all finite-dimensional g-modules:
they are the direct sum of indecomposable g-modules. The existence of the decomposition should
be clear from the definitions. Indeed, if M is a finite-dimensional g-modules a simple argument via
induction in dim M suffices to prove the existence: if M is indecomposable then there is nothing to
prove, and if M is not indecomposable then M = N ⊕ L for some nonzero submodules N, L ( M,
so that their dimensions are both strictly smaller than dim M and the existence follows from the
induction hypothesis. For a proof of uniqueness please refer to [Eti+11].

Finding the indecomposable modules of an arbitrary Lie algebra, however, turns out to be a
bit of a circular problem: the indecomposable g-modules are the ones that cannot be decomposed,
which is to say, those that are not decomposable. Ideally, we would like to find some other
condition, equivalent to indecomposability, but which is easier to work with. It is clear from the
definitions that every simple g-module is indecomposable, but there is no reason to believe the
converse is true. Indeed, this is not always the case. For instance. . .

Example 2.6. The space M = K2 endowed with the action

x · e1 = e1 x · e2 = e1 + e2

of the Lie algebra K[x] is a K[x]-module. Notice M has a single nonzero proper submodule, which
is spanned by the vector e1. This is because if (a + b)e1 + be2 = x · (ae1 + be2) = λ · (ae1 + be2) for
some λ ∈ K then λ = 1 and b = 0. Hence M is indecomposable – it cannot be broken into a direct
sum of 1-dimensional submodules – but it is evidently not simple.

This counterexample poses an interesting question: are there conditions one can impose on
an algebra g under which every indecomposable g-module is simple? This is what is known in
representation theory as complete reducibility.

Definition 2.7. A g-module M is called completely reducible if every g-submodule of M has
a g-invariant complement – i.e. given N ⊆ M, there is a submodule L ⊆ M such that
M = N ⊕ L.

Definition 2.8. A g-module M is called semisimple if it is the direct sum of simple g-
modules.

In case the relationship between complete reducibility, semisimplicity of g-modules and the
simplicity of indecomposable modules is unclear, the following results should clear things up.

Proposition 2.9. The following conditions are equivalent.

(i) Every submodule of a finite-dimensional g-module is completely reducible.

(ii) Every exact sequence of finite-dimensional g-modules splits.

(iii) Every indecomposable finite-dimensional g-module is simple.

(iv) Every finite-dimensional g-module is semisimple.

Proof. We begin by (i) =⇒ (ii). Let



§ 15

0 N M L 0
f g

be an exact sequence of g-modules. We can suppose without loss of generality that N ⊆ M is
a submodule and f is its inclusion in M, for if this is not the case there is an isomorphism of
sequences

0 N M L 0

0 f (N) M L 0

f

f

g

g

It then follows from (i) that there exists a g-submodule L′ ⊆ M such that M = N ⊕ L′. Finally,
the projection s : M −→ N is g-homomorphism satisfying

0 N M L 0
f g

s

Next is (ii) =⇒ (iii). If M is an indecomposable g-module and N ⊆ M is a submodule, we
have an exact sequence

0 N M M/N 0

of g-modules.
Since our sequence splits, we must have M ∼= N ⊕ M/N. But M is indecomposable, so that

either M = N or M ∼= M/N, in which case N = 0. Since this holds for all N ⊆ M, M is simple. For
(iii) =⇒ (iv) it suffices to apply Theorem 2.5.

Finally, for (iv) =⇒ (i), if we assume (iv) and let M be a g-module with decomposition into
simple submodules

M =
⊕

i
Mi

and N ⊆ M is a submodule. Take some maximal set of indexes {i1, . . . , ir} so that
(⊕

k Mik
)
∩ M =

0 and let L =
⊕

k Mik . We want to establish M = N ⊕ L.
Suppose without any loss in generality that ik = k for all k and let j > r. By the maximality

of our set of indexes, there is some nonzero n ∈ (Mj ⊕ L) ∩ N. Say n = mj + m1 + · · ·+ mr with
each mi ∈ Mi. Then mj = n − m1 − · · · − mr ∈ Mj ∩ (N ⊕ L) is nonzero. Indeed, if this is not the
case we find 0 6= n = m1 + · · ·+ mr ∈ (

⊕r
i=1 Mi) ∩ N, a contradiction. This implies Mj ∩ (N ⊕ L)

is a nonzero submodule of Mj. Since Mj is simple, Mj = Mj ∩ (N ⊕ L) and therefore Mj ⊆ N ⊕ L.
Given the arbitrary choice of j, it then follows M = N ⊕ L. �

While we are primarily interested in indecomposable g-modules – which is usually a strictly
larger class of representations than that of simple g-modules – it is important to note that simple
g-modules are generally much easier to find. The relationship between simple g-modules is also
well understood. This is because of the following result, known as Schur’s Lemma.

Lemma 2.10 (Schur). Let M and N be simple g-modules and f : M −→ N be a g-homomorphism.
Then f is either 0 or an isomorphism. Furthermore, if M = N is finite-dimensional then f is a
scalar operator.

Proof. For the first statement, it suffices to notice that ker f and im f are both submodules. In
particular, either ker f = 0 and im f = N or ker f = M and im f = 0. Now suppose M = N
is finite-dimensional. Let λ ∈ K be an eigenvalue of f – which exists because K is algebraically
closed – and Mλ be its corresponding eigenspace. Given m ∈ Mλ, f (X · m) = X · f (m) = λX · m.
In other words, Mλ is a g-submodule. It then follows Mλ = M, given that Mλ 6= 0. �
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We are now ready to answer our first question: the special thing about semisimple algebras is
that the relationship between their indecomposable modules and their simple modules is much
clearer. Namely. . .

Proposition 2.11. Given a finite-dimensional Lie algebra g over K, g is semisimple if, and only if
every finite-dimensional g-module is completely reducible.

The proof of the fact that a finite-dimensional Lie algebra g whose finite-dimensional modules
are completely reducible is semisimple is actually pretty simple. Namely, it suffices to note that
the adjoint g-module is the direct sum of simple submodules, which are all simple ideals of g –
so g is the direct sum of simple Lie algebras. The proof of the converse is more nuanced, and this
will be our next milestone.

Before proceeding to the proof of complete reducibility, however, we would like to introduce
some basic tools which will come in handy later on, known as. . .

2.1 Invariant Bilinear Forms

Definition 2.12. A symmetric bilinear form B : g × g −→ K is called g-invariant if the
operator ad(X) : g −→ g is antisymmetric with respect to B for all X ∈ g.

B(ad(X)Y, Z) + B(Y, ad(X)Z) = 0

Remark. The etymology of the term invariant form comes from group representation theory. Namely,
given a linear action of a group G on a vector space V equipped with a bilinear form B, B is called
G-invariant if all g ∈ G act via B-orthogonal operators. The condition of g-invariance can thus be
though-of as an infinitesimal approximation of the notion of a G-invariant form. Indeed Lie(O(B))
is precisely the Lie subalgebra of gl(V) consisting of antisymmetric operators V −→ V.

An interesting example of an invariant bilinear form is the so called Killing form.

Definition 2.13. Given a finite-dimensional Lie algebra g, the symmetric bilinear form

κ : g× g −→ K
(X, Y) 7−→ Tr(ad(X) ad(Y))

is called the Killing form of g.

The fact that the Killing form is an invariant form follows directly from the identity Tr([X, Y]Z) =
Tr(X[Y, Z]), X, Y, Z ∈ gln(K). In fact this same identity show. . .

Lemma 2.14. Given a finite-dimensional g-module M, the symmetric bilinear form

κM : g× g −→ K
(X, Y) 7−→ Tr(X �M Y �M)

is g-invariant.

The reason why we are discussing invariant bilinear forms is the following characterization of
finite-dimensional semisimple Lie algebras, known as Cartan’s criterion for semisimplicity.
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Proposition 2.15. Let g be a Lie algebra. The following conditions are equivalent.

(i) g is semisimple.

(ii) For each non-trivial finite-dimensional g-module M, the g-invariant bilinear form

κM : g× g −→ K
(X, Y) 7−→ Tr(X �M Y �M)

is non-degenerate1.

(iii) The Killing form κ is non-degenerate.

This proof is somewhat technical, but the idea behind it is simple. First, for (i) =⇒ (ii) we
show that a = {X ∈ g : κM(X, Y) = 0 ∀Y ∈ g} is a solvable ideal of g. Hence a = 0. For (ii)
=⇒ (iii) it suffices to take M = g the adjoint g-module. Finally, for (iii) =⇒ (i) we note that
the orthogonal complement of any a / g with respect to the Killing form κ is an ideal b of g with
g = a⊕ b. Furthermore, the Killing form of a is the restriction κ �a of the Killing form of g to
a× a, which is non-degenerate. It then follows from induction in dim a that g is the sum of simple
ideals.

We refer the reader to [E H73, ch. 5] for a complete proof. Without further ado, we may
proceed to our. . .

2.2 Proof of Complete Reducibility

Let g be a finite-dimensional Lie algebra over K. We want to establish that if g is semisimple then
all finite-dimensional g-modules are semisimple. Historically, this was first proved by Herman
Weyl for K = C, using his knowledge of smooth representations of compact Lie groups. Namely,
Weyl showed that any finite-dimensional semisimple complex Lie algebra is (isomorphic to) the
complexification of the Lie algebra of a unique simply connected compact Lie group, known as its
compact form. Hence the category of the finite-dimensional modules of a given complex semisimple
algebra is equivalent to that of the finite-dimensional smooth representations of its compact form,
whose representations are known to be completely reducible because of Maschke’s Theorem – see
[GS18, ch. 3] for instance.

This proof, however, is heavily reliant on the geometric structure of C. In other words, there
is no hope for generalizing this for some arbitrary K. Fortunately for us, there is a much sim-
pler, completely algebraic proof of complete reducibility, which works for algebras over any alge-
braically closed field of characteristic zero. The algebraic proof included in here is mainly based
on that of [Kir08, ch. 6], and uses some basic homological algebra. Admittedly, much of the
homological algebra used in here could be concealed from the reader, which would make the
exposition more accessible – see [E H73] for instance.

However, this does not change the fact the arguments used in this proof are essentially homo-
logical in nature. Hence we consider it more productive to use the full force of the language of
homological algebra, instead of burring the reader in a pile of unmotivated, yet entirely elemen-
tary arguments. Furthermore, the homological algebra used in here is actually very basic. In fact,
all we need to know is. . .

1A symmetric bilinear form B : g× g −→ K is called non-degenerate if B(X, Y) = 0 for all Y ∈ g implies X = 0.
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Theorem 2.16. There is a sequence of bifunctors Exti : g-Modop × g-Mod −→ K-Vect, i > 0
such that, given a g-module L′, every exact sequence of g-modules

0 N M L 0
f g

induces long exact sequences

0 Homg(L′, N) Homg(L′, M) Homg(L′, L)

Ext1(L′, N) Ext1(L′, M) Ext1(L′, L)

Ext2(L′, N) Ext2(L′, M) Ext2(L′, L) · · ·

f ◦− g◦−

and

0 Homg(L, L′) Homg(M, L′) Homg(N, L′)

Ext1(L, L′) Ext1(M, L′) Ext1(N, L′)

Ext2(L, L′) Ext2(M, L′) Ext2(N, L′) · · ·

−◦g −◦ f

Theorem 2.17. Given g-modules N and L, there is a one-to-one correspondence between elements
of Ext1(L, N) and isomorphism classes of short exact sequences

0 N M L 0

In particular, Ext1(L, N) = 0 if, and only if every short exact sequence of g-modules with N and L
in the extremes splits.

We should point out that, although we have not provided an explicit definition of the bifunc-
tors Exti, they are uniquely determined by the conditions of Theorem 2.16 and some additional
minimality constraints. This is, of course, far from a comprehensive account of homological alge-
bra. Nevertheless, this is all we need. We refer the reader to [Har08] for a complete exposition, or
to part II of [Rib22] for a more modern account using derived categories.

We are particularly interested in the case where L′ = K is the trivial g-module. Namely, we
may define. . .

Definition 2.18. Given a Lie algebra g and a g-module M, we refer to the Abelian group
Hi(g, M) = Exti(K, M) as the i-th Lie algebra cohomology group of g with coefficients in M.

Definition 2.19. Given a g-module M, we call the vector space Mg = {m ∈ M : X · m =
0 ∀X ∈ g} the space of invariants of M. A simple calculations shows that a g-homomorphism
f : M −→ N takes invariants to invariants, so that f restricts to a map Mg −→ Ng. This
construction thus yields a functor −g : g-Mod −→ K-Vect.
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Example 2.20. Let M be a g-module. Then M is a direct sum of copies of the trivial g-module if,
and only if M = Mg.

Example 2.21. Let M and N be g-modules. Then Hom(M, N)g = Homg(M, N). Indeed, given a
K-linear map f : M −→ N we find

f ∈ Hom(M, N)g ⇐⇒ X · f (m)− f (X · m) = (X · f )(m) = 0 ∀X ∈ g, m ∈ M
⇐⇒ X · f (m) = f (X · m) ∀X ∈ g, m ∈ M
⇐⇒ f ∈ Homg(M, N)

The Lie algebra cohomology groups are very much related to invariants of g-modules. Namely,
constructing a g-homomorphism f : K −→ M is precisely the same as fixing an invariant of M –
corresponding to f (1), which must be an invariant for f to be a g-homomorphism. Formally, this
translates to the existence of a canonical isomorphism of functors Homg(K,−)

∼−−→ −g given by

Homg(K, M)
∼−−→ Mg

f 7−→ f (1)

This implies. . .

Corollary 2.22. Every short exact sequence of g-modules

0 N M L 0
f g

induces a long exact sequence

0 Ng Mg Lg

H1(g, N) H1(g, M) H1(g, L)

H2(g, N) H2(g, M) H2(g, L) · · ·

f g

Proof. We have an isomorphism of sequences

0 Homg(K, N) Homg(K, M) Homg(K, L) H1(g, N) · · ·

0 Ng Mg Lg H1(g, N) · · ·

f ◦− g◦−

f g

By Theorem 2.16 the sequence on the top is exact. Hence so is the sequence on the bottom. �

This is all well and good, but what does any of this have to do with complete reducibility?
Well, in general cohomology theories really shine when one is trying to control obstructions of
some kind. In our case, the bifunctor H1(g, Hom(−,−)) : g-Modop × g-Mod −→ K-Vect classifies
obstructions to complete reducibility. Explicitly. . .

Theorem 2.23. There is a natural isomorphism Ext1 ∼−−→ H1(g, Hom(−,−)). In particular, given
g-modules N and L, there is a one-to-one correspondence between elements of H1(g, Hom(L, N))
and isomorphism classes of short exact sequences

0 N M L 0
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This is essentially a consequence of Example 2.21 and Theorem 2.17, as well as the minimality
conditions that characterize Ext1. For the readers already familiar with homological algebra:
the correspondence between H1(g, Hom(L, N)) and short exact sequences of g-modules can be
described in very concrete terms by considering a canonical free resolution

· · · U(g)⊗ (∧2g) U(g)⊗ g U(g) K 0

of the trivial g-module K, known as the Chevalley-Eilenberg resolution, which provides an explicit
construction of the cohomology groups – see [LB00, sec. 1.3C] or [GS84, sec. 24] for further details.

We will use the previous result implicitly in our proof, but we will not prove it in its full force.
Namely, we will show that if g is semisimple then H1(g, M) = 0 for all finite-dimensional M,
and that the fact that H1(g, Hom(L, N)) = 0 for all finite-dimensional N and L implies complete
reducibility. To that end, we introduce a distinguished element of U(g), known as the Casimir
element of a g-module.

Definition 2.24. Let g be a finite-dimensional semisimple Lie algebra and M be a finite-
dimensional g-module. Let {Xi}i be a basis for g and denote by {Xi}i ⊆ g its dual basis
with respect to the form κM – i.e. the unique basis for g satisfying κM(Xi, X j) = δij, whose
existence is a consequence of the non-degeneracy of κM. We call

ΩM = X1X1 + · · ·+ XrXr ∈ U(g)

the Casimir element of M.

Lemma 2.25. The definition of ΩM is independent of the choice of basis {Xi}i.

Proof. Whatever basis {Xi}i we choose, the image of ΩM under the canonical isomorphism g⊗
g

∼−−→ g⊗ g∗
∼−−→ End(g) is the identity operator2. �

Proposition 2.26. The Casimir element ΩM ∈ U(g) is central, so that ΩM �N : N −→ N is a
g-homomorphism for any g-module N. Furthermore, ΩM acts on M as a nonzero scalar operator
whenever M is a non-trivial finite-dimensional simple g-module.

Proof. To see that ΩM is central fix a basis {Xi}i for g and denote by {Xi}i its dual basis with
respect to κM, as in Definition 2.24. Given any X ∈ g, it follows from definition of the Xi that
X = κM(X, X1)X1 + · · ·+ κM(X, Xr)Xr = κM(X, X1)X1 + · · ·+ κM(X, Xr)Xr.

In particular, it follows from the invariance of κM that

[X, ΩM] = ∑
i
[X, XiXi]

= ∑
i
[X, Xi]Xi + ∑

i
Xi[X, Xi]

= ∑
ij

κM([X, Xi], X j)XjXi + ∑
ij

κM([X, Xi], Xj)XiX j

= ∑
ij
(κM([X, Xj], Xi) + κM(Xj, [X, Xi]))XiX j

= 0

,

2Here the isomorphism g⊗ g
∼−−→ g⊗ g∗ is given by tensoring the identity g −→ g with the isomorphism g

∼−−→ g∗

induced by the form κM .
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and ΩM is central. This implies that ΩM �N : N −→ N is a g-homomorphism for all g-modules N:
its action commutes with the action of any other element of g.

In particular, it follows from Schur’s Lemma that if M is finite-dimensional and simple then
ΩM acts on M as a scalar operator. To see that this scalar is nonzero we compute

Tr(ΩM �M) = Tr(X1 �M X1 �M) + · · ·+ Tr(Xr �M Xr �M) = dim g,

so that ΩM �M= λ Id for λ = dimg
dim M 6= 0. �

As promised, the Casimir element of a g-module can be used to establish. . .

Proposition 2.27. Suppose g is semisimple and let M be a finite-dimensional g-module. Then
H1(g, M) = 0.

Proof. We begin by the case where M is simple. Due to Theorem 2.17, it suffices to show that any
exact sequence of the form

0 M N K 0
f g

(2.1)

splits.
If M = K is the trivial g-module then the exactness of

0 K N K 0
f g

(2.2)

implies N is 2-dimensional. Take any nonzero n ∈ N outside of the image of f .
Since dim N = 2, the simple component U(g) · n of n in N is either Kn or N itself. But this

component cannot be N, since the image of f is a 1-dimensional g-module – i.e. a proper nonzero
submodule. Hence Kn is invariant under the action of g. In particular, X · n = 0 for all X ∈ g.
Since n lies outside the image of f , g(n) 6= 0 – which is to say, n /∈ ker g = im f . This implies the
map K −→ N that takes 1 to n/g(n) is a splitting of (2.2).

Now suppose that M is non-trivial, so that ΩM acts on M as λ for some λ 6= 0. Denote by
Nµ the generalized eigenspace of ΩM �N : N −→ N associated with µ ∈ K. If we identify M with
f (M), it is clear that M ⊆ Nλ. The exactness of (2.1) implies dim N = dim M + 1, so that either
Nλ = M or Nλ = N. But if Nλ = N then there is some nonzero n ∈ Nλ with n /∈ M = ker g such
that

0 = (ΩM − λ)r · n =
r

∑
k=0

(−1)k
(

r
k

)
λkΩr−k

M · n

for some r > 1.
In particular,

(−λ)r−1g(n) =
r−1

∑
k=0

(−1)k
(

r
k

)
λkg(Ωr−k

M · n) =
r−1

∑
k=0

(−1)k
(

r
k

)
λk Ωr−k

M · g(n)︸ ︷︷ ︸
= 0

= 0,

which is a contradiction – given that neither (−λ)r−1 nor g(n) are nil. Hence M = Nλ and there
must be some other eigenvalue µ of ΩM �N . For any such µ and any eigenvector n ∈ Nµ,

µg(n) = g(µn) = g(ΩM · n) = ΩM · g(n) = 0

implies µ = 0, so that the eigenvalues of the action of ΩM on N are precisely λ and 0.
Now notice that N0 is in fact a submodule of N. Indeed, given n ∈ N0 and X ∈ g, it follows

from the fact that ΩM is central that

Ωr
M · (X · n) = X · (Ωr

M · n) = X · 0 = 0
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for some r. Hence N = M ⊕ N0 as g-modules. The homomorphism g thus induces an isomor-
phism N0 ∼= N/M

∼−−→ K, which translates to a splitting of (2.1).
Finally, we consider the case where M is not simple. Suppose H1(g, N) = 0 for all g-modules

with dim N < dim M and let N ⊆ M be a proper nonzero submodule. Then the exact sequence

0 N M M/N 0

induces a long exact sequence of the form

· · · H1(g, N) H1(g, M) H1(g, M/N) · · · (2.3)

Since dim N < dim M, it follows H1(g, N) = 0. In addition, since dim N > 0, we find
dim M/N < dim M and thus H1(g, M/N) = 0. The exactness of (2.3) then implies H1(g, M) = 0.
Hence by induction in dim M we find H1(g, M) = 0 for all finite-dimensional M. We are done. �

We are now finally ready to prove. . .

Theorem 2.28 (Weyl). Given a semisimple Lie algebra g, every finite-dimensional g-module is
semisimple.

Proof. Let

0 N M L 0
f g

(2.4)

be a short exact sequence of finite-dimensional g-modules. We want to establish that (2.4) splits.
We have an exact sequence

0 Hom(L, N) Hom(L, M) Hom(L, L) 0
f ◦− g◦−

of vector spaces. Since all maps involved are g-homomorphisms, this is an exact sequence of
g-modules. This then induces a long exact sequence

0 Hom(L, N)g Hom(L, M)g Hom(L, L)g

H1(g, Hom(L, N)) H1(g, Hom(L, M)) H1(g, Hom(L, L)) · · ·

f ◦− g◦−

of vector spaces.
But H1(g, Hom(L, N)) vanishes because of Proposition 2.27. In addition, recall from Exam-

ple 2.21 that Hom(L, L′)g = Homg(L, L′). We thus have a short exact sequence

0 Homg(L, N) Homg(L, M) Homg(L, L) 0
f ◦− g◦−

In particular, there is some g-homomorphism s : L −→ M such that g ◦ s : L −→ L is the
identity operator. In other words

0 N M L 0
f g

s

is a splitting of (2.4). �

Theorem 2.28 typically fails in the infinite-dimensional setting. For instance, consider. . .
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Example 2.29. The regular g-module U(g) is an indecomposable module which is not simple. In
particular, U(g) is not semisimple. To see this, notice that the submodules of U(g) are precisely
its left ideals. If we suppose that I, J /U(g) are such that U(g) = I ⊕ J as g-modules, we can find
u ∈ I and v ∈ J such that 1 = u + v. The PBW Theorem then implies that u and v commute, so
that uv = vu ∈ I ∩ J = 0. Since U(g) is a domain, either u = 0 or v = 0. Given that 1 = u + v,
u = 1 or v = 1. Hence either I = U(g) and J = 0 or I = 0 and J = U(g), as required.

We should point out that these last results are just the beginning of a well developed cohomol-
ogy theory. For example, a similar argument involving the Casimir elements can be used to show
that Hi(g, M) = 0 for all semisimple g and all non-trivial finite-dimensional simple M, i > 0. For
K = C, the Lie algebra cohomology groups of the algebra g = C ⊗ Lie(G) are intimately related
with the topological cohomologies – i.e. singular cohomology, de Rham cohomology, etc. – of G
with coefficients in C. We refer the reader to [LB00] and [GS84, sec. 24] for further details.

Complete reducibility can be generalized for arbitrary – not necessarily semisimple – g, to a
certain extent, by considering the exact sequence

0 rad(g) g g/rad(g) 0

This sequence always splits for finite-dimensional g, which in light of Example 2.4 implies
we can deduce information about g-modules by studying the modules of its “semisimple part”
g/rad(g) – see Proposition 1.35. In practice this translates to. . .

Proposition 2.30 (Lie). Let g be a solvable Lie algebra. Every finite-dimensional simple g-module
is 1-dimensional.

Corollary 2.31. Let g be a Lie algebra. Every finite-dimensional simple g-module is the tensor
product of a simple g/rad(g)-module and a 1-dimensional rad(g)-module.

Proof. This follows at once from Proposition 2.30 and Example 2.4. �

Having finally reduced our initial classification problem to that of classifying the finite-dimensional
simple g-modules, we can now focus exclusively in this particular class of g-modules. However,
there is so far no indication on how we could go about understanding them. In the next chapter
we will explore some concrete examples in the hopes of finding a solution to our general problem.
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Chapter 3

Representations of sl2(K) & sl3(K)

We are, once again, faced with the daunting task of classifying the finite-dimensional modules of
a given (semisimple) algebra g. Having reduced the problem a great deal, all its left is classifying
the simple g-modules. We have encountered numerous examples of simple g-modules over the
previous chapter, but we have yet to subject them to any serious scrutiny. In this chapter we
begin a systematic investigation of simple modules by looking at concrete examples. Specifically,
we will classify the simple finite-dimensional modules of certain low-dimensional semisimple Lie
algebras: sl2(K) and sl3(K).

The reason why we chose sl2(K) is a simple one: throughout the previous chapters sl2(K)
has afforded us surprisingly illuminating examples. We begin our analysis by recalling that the
elements

e =
(

0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
form a basis for sl2(K) and satisfy

[e, f ] = h [h, f ] = −2 f [h, e] = 2e

Let M be a finite-dimensional simple sl2(K)-module. We now turn our attention to the action
of h on M, in particular, we investigate the subspace

⊕
λ Mλ ⊆ M – where λ ranges over the

eigenvalues of h�M and Mλ is the corresponding eigenspace.
At this point, this is nothing short of a gamble: why look at the eigenvalues of h? The short

answer is that, as we shall see, this will pay off. We will postpone the discussion about the real
reason of why we chose h, but for now we may notice that, perhaps surprisingly, the action h �M
of h on a finite-dimensional simple sl2(K)-module M is always a diagonalizable operator.

Let λ be any eigenvalue of h�M. Notice Mλ is in general not a sl2(K)-submodule of M. Indeed,
if m ∈ Mλ then the identities

h · (e · m) = 2e · m + eh · m = (λ + 2)e · m
h · ( f · m) = −2 f · m + f h · m = (λ − 2) f · m

follow. In other words, e sends an element of Mλ to an element of Mλ+2, while f sends it to an
element of Mλ−2. Visually, we may draw

· · · Mλ−2 Mλ Mλ+2 · · ·

e e

f f

25
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This implies
⊕

λ Mλ is a sl2(K)-submodule, so that
⊕

λ Mλ is either 0 or the entirety of M
– recall that M is simple. Since M is finite dimensional, h �M has at least one eigenvalue and
therefore

M =
⊕

λ

Mλ

Even more so, we have seen that for any eigenvalue λ ∈ K of h �M,
⊕

k∈Z Mλ−2k is a sl2(K)-
invariant subspace, which goes to show

M =
⊕
k∈Z

Mλ−2k,

and the eigenvalues of h all have the form λ − 2k for some k. By the same token, if a is the greatest
k ∈ Z such that Vλ−2k 6= 0 and, likewise, b is the smallest k ∈ Z such that Vλ−2k 6= 0 then

M =
⊕
k∈Z

a6k6b

Mλ−2k

The eigenvalues of h thus form an unbroken string

. . . , λ − 4, λ − 2, λ, λ + 2, λ + 4, . . .

around λ. Our main objective is to show M is determined by this string of eigenvalues. To do
so, we suppose without any loss in generality that λ is the right-most eigenvalue of h, fix some
nonzero m ∈ Mλ and consider the set {m, f · m, f 2 · m, . . .}.

Proposition 3.1. The set {m, f · m, f 2 · m, . . .} is a basis for M. In addition, the action of sl2(K)
on M is given by the formulas

f k · m e7−→ k(λ + 1 − k) f k−1 · m f k · m
f7−→ f k+1 · m f k · m h7−→ (λ − 2k) f k · m (3.1)

Proof. First of all, notice f k · m lies in Mλ−2k, so that {m, f · m, f 2 · m, . . .} is a set of linearly
independent vectors. Hence it suffices to show M = K〈m, f · m, f 2 · m, . . .〉, which in light of the
fact that M is simple is the same as showing K〈m, f · m, f 2 · m, . . .〉 is invariant under the action of
sl2(K).

The fact that h · ( f k · m) ∈ K〈m, f · m, f 2 · m, . . .〉 follows immediately from our previous asser-
tion that f k · m ∈ Mλ−2k – indeed, h · ( f k · m) = (λ − 2k) f k · m ∈ K〈m, f · m, f 2 · m, . . .〉, which also
goes to show one of the formulas in (3.1). Seeing e · ( f k · m) ∈ K〈m, f · m, f 2 · m, . . .〉 is a bit more
complex. Clearly,

e · ( f · m) = h · m + f · (e · m)

(since λ is the right-most eigenvalue) = h · m + f · 0
= λm

Next we compute

e · ( f 2 · m) = (h + f e) · ( f · m)

= h · ( f · m) + f · (λm)

= 2(λ − 1) f · m

The pattern is starting to become clear: e sends f k · m to a multiple of f k−1 · m. Explicitly, it is
not hard to check by induction that

e · ( f k · m) = k(λ + 1 − k) · f k−1m,

which which is the first formula of (3.1). �



§ 27

The significance of Proposition 3.1 should be self-evident: we have just provided a complete
description of the action of sl2(K) on M. In particular, this goes to show. . .

Corollary 3.2. Every eigenspace of the action of h on M is 1-dimensional.

Proof. It suffices to note {m, f · m, f 2 · m, . . .} is a basis for M consisting of eigenvalues of h and
whose only element in Mλ−2k is f k · m. �

Corollary 3.3. The eigenvalues of h in M form a symmetric, unbroken string of integers separated
by intervals of length 2 whose right-most value is dim M − 1.

Proof. If f r is the lowest power of f that annihilates m, it follows from the formulas in (3.1) that

0 = e · 0 = e · ( f r · m) = r(λ + 1 − r) f r−1 · m

This implies λ + 1 − r = 0 – i.e. λ = r − 1 ∈ Z. Now since {m, f · m, f 2 · m, . . . , f r−1 · m} is a
basis for M, r = dim V. Hence if λ = dim V − 1 then the eigenvalues of h are

. . . , λ − 6, λ − 4, λ − 2, λ

To see that this string is symmetric around 0, simply note that the left-most eigenvalue of h is
precisely λ − 2(r − 1) = −λ. �

Visually, the situation it thus

M−λ M−λ+2 M−λ+4 · · · Mλ−4 Mλ−2 Mλ

e e

f f

e e

f f

Corollary 3.3 can be used to find the eigenvalues of the action of h on an arbitrary finite-
dimensional sl2(K)-module. Namely, if M and N are sl2(K)-modules, m ∈ Mµ and n ∈ Nµ then
by computing

h · (m + n) = h · m + h · n = µ(m + n)

we can see that (M ⊕ N)µ = Mµ + Nµ. Hence the set of eigenvalues of h in a sl2(K)-module M is
the union of the sets of eigenvalues in its simple components, and the corresponding eigenspaces
are the direct sums of the eigenspaces of such simple components.

In particular, if the eigenvalues of M all have the same parity – i.e. they are either all even
integers or all odd integers – and the dimension of each eigenspace is no greater than 1 then M
must be simple, for if N, L ⊆ M are submodules with M = N ⊕ L then either Nλ = 0 for all λ or
Lλ = 0 for all λ ∈ h∗. To conclude our analysis all it is left is to show that for each λ ∈ Z with
λ > 0 there is some finite-dimensional simple M whose highest weight is λ. Surprisingly, we have
already encountered such a M.

Theorem 3.4. For each λ > 0, λ ∈ Z, there exists a unique simple sl2(K)-module whose left-most
eigenvalue of h is λ.

Proof. Let M = K[x, y](λ) be the sl2(K)-module of homogeneous polynomials of degree λ in two
variables, as in Example 1.54. A simple calculation shows Mn−2k = Kxλ−kyk for k = 0, . . . , λ and
Mµ = 0 otherwise. In particular, the right-most eigenvalue of M is λ. Alternatively, one can
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readily check that if K2 is the natural sl2(K)-module, then M = Symλ K2 satisfies the relations of
(3.1). Indeed, the map

K[x, y](λ) −→ Symλ K2

xky` 7−→ ek
1 · e`2

is an isomorphism.
Either way, by the previous observation that a finite-dimensional sl2(K)-module whose eigen-

values all have the same parity and whose corresponding eigenspace are all 1-dimensional must
be simple, M is simple. As for the uniqueness of M, it suffices to notice that if N is a finite-
dimensional simple sl2(K)-module with right-most eigenvalue λ and n ∈ Nλ is nonzero then
relations (3.1) imply the map

M −→ N

f k · m 7−→ f k · n

is an isomorphism – this is, in effect, precisely how the isomorphism K[x, y](λ) ∼−−→ Symλ K2 was
constructed. �

Our initial gamble of studying the eigenvalues of h may have seemed arbitrary at first, but it
payed off: we have completely described all simple sl2(K)-modules. It is not yet clear, however, if
any of this can be adapted to a general setting. In the following section we shall double down
on our gamble by trying to reproduce some of these results for sl3(K), hoping this will somehow
lead us to a general solution. In the process of doing so we will find some important clues on why
h was a sure bet and the race was fixed all along.

3.1 Representations of sl2+1(K)

The study of representations of sl2(K) reminds me of the difference between the derivative of a
function R −→ R and that of a smooth map between manifolds: it is a simpler case of something
greater, but in some sense it is too simple of a case, and the intuition we acquire from it can be a
bit misleading in regards to the general setting. For instance, I distinctly remember my Calculus I
teacher telling the class “the derivative of the composition of two functions is not the composition
of their derivatives” – which is, of course, the correct formulation of the chain rule in the context
of smooth manifolds.

The same applies to sl2(K). It is a simple and beautiful example, but unfortunately the general
picture, modules of arbitrary semisimple algebras, lacks its simplicity. The general purpose of this
section is to investigate to which extent the framework we developed for sl2(K) can be generalized
to other semisimple Lie algebras. Of course, the algebra sl3(K) stands as a natural candidate for
potential generalizations: sl3(K) = sl2+1(K) after all.

Our approach is very straightforward: we will fix some simple sl3(K)-module M and proceed
step by step, at each point asking ourselves how we could possibly adapt the framework we laid
out for sl2(K). The first obvious question is one we have already asked ourselves: why h? More
specifically, why did we choose to study its eigenvalues and is there an analogue of h in sl3(K)?

The answer to the former question is one we will discuss at length in the next chapter, but for
now we note that perhaps the most fundamental property of h is that there exists an eigenvector m
of h that is annihilated by e – that being the generator of the right-most eigenspace of h. This was
instrumental to our explicit description of the simple sl2(K)-modules culminating in Theorem 3.4.

Our first task is to find some analogue of h in sl3(K), but it is still unclear what exactly we
are looking for. We could say we are looking for an element of M that is annihilated by some
analogue of e, but the meaning of some analogue of e is again unclear. In fact, as we shall see,
no such analogue exists and neither does such element. Instead, the actual way to proceed is to
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consider the subalgebra

h =

X ∈

K 0 0
0 K 0
0 0 K

 : Tr(X) = 0


The choice of h may seem like an odd choice at the moment, but the point is we will later show

that there exists some m ∈ M that is simultaneously an eigenvector of each H ∈ h and annihilated
by half of the remaining elements of sl3(K). This is exactly analogous to the situation we found
in sl2(K): h corresponds to the subalgebra h, and the eigenvalues of h in turn correspond to linear
functions λ : h −→ k such that H · m = λ(H)m for each H ∈ h and some nonzero m ∈ M. We call
such functionals λ eigenvalues of h, and we say m is an eigenvector of h.

Once again, we will pay special attention to the eigenvalue decomposition

M =
⊕

λ

Mλ (3.2)

where λ ranges over all eigenvalues of h and Mλ = {m ∈ M : H · m = λ(H)m, ∀H ∈ h}. We
should note that the fact that (3.2) holds is not at all obvious. This is because in general Mλ is not
the eigenspace associated with an eigenvalue of any particular operator H ∈ h, but instead the
eigenspace of the action of the entire algebra h. Fortunately for us, (3.2) always holds, but we will
postpone its proof to the next chapter.

Next we turn our attention to the remaining elements of sl3(K). In our analysis of sl2(K) we
saw that the eigenvalues of h differed from one another by multiples of 2. A possible way to
interpret this is to say the eigenvalues of h differ from one another by integral linear combinations of the
eigenvalues of the adjoint action of h. In English, since

ad(h)e = 2e ad(h) f = −2 f ad(h)h = 0,

the eigenvalues of the adjoint actions of h are 0 and ±2, and the eigenvalues of the action of h on
a simple sl2(K)-module differ from one another by integral multiples of 2.

In the case of sl3(K), a simple calculation shows that if [H, X] is scalar multiple of X for all
H ∈ h then all but one entry of X are zero. Hence the eigenvectors of the adjoint action of h are
Eij and its eigenvalues are εi − εj, where

εi

a1 0 0
0 a2 0
0 0 a3

 = ai

Visually we may draw

0

ε2 − ε3

ε2 − ε1 ε1 − ε3

ε3 − ε1 ε1 − ε2

ε3 − ε1

ε1

ε2

ε3

If we denote the eigenspace of the adjoint action of h on sl3(K) associated to α by sl3(K)α and
fix some X ∈ sl3(K)α, H ∈ h and m ∈ Mλ then

H · (X · m) = X · (H · m) + [H, X] · m
= X · (λ(H)m) + α(H)X · m
= (λ + α)(H)X · m
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so that X carries m to Mλ+α. In other words, sl3(k)α acts on M by translating vectors between
eigenspaces.

For instance sl3(K)ε1−ε3 will act on the adjoint sl3(K)-modules via

This is again entirely analogous to the situation we observed in sl2(K). In fact, we may once
more conclude. . .

Theorem 3.5. The eigenvalues of the action of h on a simple sl3(K)-module M differ from one
another by integral linear combinations of the eigenvalues εi − εj of the adjoint action of h on
sl3(K).

Proof. This proof goes exactly as that of the analogous statement for sl2(K): it suffices to note that
if we fix some eigenvalue λ of h and let i and j vary then⊕

ij
Mλ+εi−εj

is an invariant subspace of M. �

To avoid confusion we better introduce some notation to differentiate between eigenvalues of
the action of h on M and eigenvalues of the adjoint action of h.

Definition 3.6. Given a sl3(K)-module M, we will call the nonzero eigenvalues of the action
of h on M weights of M. As you might have guessed, we will correspondingly refer to
eigenvectors and eigenspaces of a given weight by weight vectors and weight spaces.

It is clear from our previous discussion that the weights of the adjoint sl3(K)-module deserve
some special attention.

Definition 3.7. The weights of the adjoint sl3(K)-module are called roots of sl3(K). Once
again, the expressions root vector and root space are self-explanatory.

Theorem 3.5 can thus be restated as. . .

Definition 3.8. The lattice Q = Z〈εi − εj : i, j = 1, 2, 3〉 is called the root lattice of sl3(K).

Corollary 3.9. The weights of a simple sl3(K)-module M are all congruent modulo the root lattice
Q. In other words, the weights of M all lie in a single Q-coset ξ ∈ h∗/Q.

At this point we could keep playing the tedious game of reproducing the arguments from the
previous section in the context of sl3(K). However, it is more profitable to use our knowledge of
sl2(K)-modules instead. Notice that the canonical inclusion gl2(K) −→ gl3(K) – as described in
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Example 1.4 – restricts to an injective homomorphism sl2(K) −→ sl3(K). In other words, sl2(K) is
isomorphic to the image s12 = K〈E12, E21, [E12, E21]〉 ⊆ sl3(K) of the inclusion sl2(K) −→ sl3(K).
We may thus regard M as a sl2(K)-module by restricting to s12.

Our first observation is that, since the root spaces act by translation, the subspace⊕
k∈Z

Mλ−k(ε1−ε2)
,

must be invariant under the action of E12 and E21 for all λ ∈ h∗. This goes to show
⊕

k Mλ−k(ε1−ε2)

is a sl2(K)-submodule of M for all weights λ of M. Furthermore, one can easily see that the
eigenspace of the action of h on

⊕
k∈Z Mλ−k(ε1−ε2)

associated with the eigenvalue λ(H) − 2k is
precisely the weight space Mλ−k(ε2−ε1)

.
Visually,

λ

E12

E21

In general, we find. . .

Proposition 3.10. Given i < j, the subalgebra sij = K〈Eij, Eji, [Eij, Eji]〉 is isomorphic to sl2(K).
In addition, given a weight λ ∈ h∗ of M, the space

N =
⊕
k∈Z

Mλ−k(εi−εj)

is invariant under the action of sij and

Mλ−k(εi−εj)
= Nλ([Eij ,Eji ])−2k

Proof. In effect, if i 6= k 6= j then sij is the subalgebra of matrices whose k-th row and k-th column
are nil. For instance, if i = 1 and j = 3 then

s13 =

K 0 K
0 0 0
K 0 K

 ∩ sl3(K)

In this case, the map

s13 −→ sl2(K)a 0 b
0 0 0
c 0 −a

 7−→

a 0 b
0 0 0
c 0 −a

 =

(
a b
c −a

)
is an isomorphism of Lie algebras. In general, the map

sij −→ sl2(K)

Eij 7−→ e

Eji 7−→ f

[Eij, Eji] 7−→ h
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which “erases the k-th row and the k-th column” of a matrix is an isomorphism.
To see that N is invariant under the action of sij, it suffices to notice Eij and Eji map m ∈

Mλ−k(εi−εj)
to Eij · m ∈ Mλ−(k−1)(εi−εj)

and Eji · m ∈ Mλ−(k+1)(εi−εj)
, respectively. Moreover,

(λ − k(εi − εj))([Eij, Eji]) = λ([Eij, Eji])− k(1 − (−1)) = λ([Eij, Eji])− 2k,

which goes to show Mλ−k(εi−εj)
⊆ Nλ([Eij ,Eji ])−2k. On the other hand, if we suppose 0 < dim Mλ−k(εi−εj)

<

dim Nλ([Eij ,Eji ])−2k for some k we arrive at

dim N = ∑
k

dim Mλ−k(εi−εj)
< ∑

k
dim Nλ([Eij ,Eji ])−2k = dim N,

a contradiction. �

As a first consequence of this, we show. . .

Definition 3.11. The lattice P = Z〈ε1, ε2, ε3〉 is called the weight lattice of sl3(K).

Corollary 3.12. Every weight λ of M lies in the weight lattice P.

Proof. It suffices to note λ([Eij, Eji]) is an eigenvalue of h in a finite-dimensional sl2(K)-module, so
it must be an integer. Now since

λ

a 0 0
0 b 0
0 0 −a − b

 = λ

a 0 0
0 0 0
0 0 −a

+ λ

0 0 0
0 b 0
0 0 −b

 = aλ([E13, E31]) + bλ([E23, E32]),

which is to say λ = λ([E13, E31])ε1 + λ([E23, E32])ε2 ∈ P. �

There is a clear parallel between the case of sl3(K) and that of sl2(K), where we observed that
the eigenvalues of the action of h all lied in the lattice P = Z and were congruent modulo the
sublattice Q = 2Z.

Among other things, this last result goes to show that the diagrams we have been drawing are
in fact consistent with the theory we have developed. Namely, since all weights lie in the rational
span of {ε1, ε2, ε3}, we may as well draw them in the Cartesian plane. In fact, the attentive reader
may notice that κ(E12, E23) = −1/2, so that the angle – with respect to the Killing form κ – between
the root vectors E12 and E23 is precisely the same as the angle between the points representing
their roots ε1 − ε2 and ε2 − ε3 in the Cartesian plane. Since ε1 − ε2 and ε2 − ε3 span h∗, this implies
the diagrams we’ve been drawing are given by an isometry QP ∼−−→ Q2, where QP is endowed
with the bilinear form defined by (εi − εj, εk − α`) 7−→ κ(Eij, Ek`) – which we denote by κ as well.

To proceed we once more refer to the previously established framework: next we saw that
the eigenvalues of h form an unbroken string of integers symmetric around 0. To prove this we
analyzed the right-most eigenvalues of h and their eigenvectors, providing an explicit description
of the simple sl2(K)-modules in terms of these vectors. We may reproduce these steps in the
context of sl3(K) by fixing a direction in the plane an considering the weight lying the furthest in
that direction.

For instance, let’s say we fix the direction



§3.1. Representations of sl2+1(K) 33

and let λ be the weight lying the furthest in this direction.
Its easy to see what we mean intuitively by looking at the previous picture, but its precise

meaning is still allusive. Formally this means we will choose a linear functional f : QP −→ Q

and pick the weight that maximizes f . To avoid any ambiguity we should choose the direction of
a line irrational with respect to the root lattice Q – for if f is not irrational there may be multiple
choices the “weight lying the furthest” along this direction.

Definition 3.13. We say that a root α is positive if f (α) > 0 – i.e. if it lies to the right of
the direction we chose. Otherwise we say α is negative. Notice that f (α) 6= 0 since by
definition α 6= 0 and f is irrational with respect to the lattice Q.

The next observation we make is that all others weights of M must lie in a sort of 1
3 -cone with

apex at λ, as shown in

λ

Indeed, if this is not the case then, by definition, λ is not the weight placed the furthest in the
direction we chose. Given our previous assertion that the root spaces of sl3(K) act on the weight
spaces of M via translation, this implies that E12, E13 and E23 all annihilate Mλ, or otherwise one
of Mλ+ε1−ε2 , Mλ+ε1−ε3 and Mλ+ε2−ε3 would be nonzero – which contradicts the hypothesis that
λ lies the furthest in the direction we chose. In other words. . .

Proposition 3.14. There is a weight vector m ∈ M that is annihilated by all positive root spaces of
sl3(K).

Proof. It suffices to note that the positive roots of sl3(K) are precisely ε1 − ε2, ε1 − ε3 and ε2 − ε3,
with root vectors E12, E13 and E23, respectively. �

We call λ the highest weight of M, and we call any nonzero m ∈ Mλ a highest weight vector. Going
back to the case of sl2(K), we then constructed an explicit basis for our simple module in terms
of a highest weight vector, which allowed us to provide an explicit description of the action of
sl2(K) in terms of its standard basis, and finally we concluded that the eigenvalues of h must be
symmetrical around 0. An analogous procedure could be implemented for sl3(K) – and indeed
that’s what we will do later down the line – but instead we would like to focus on the problem of
finding the weights of M in the first place.

We will start out by trying to understand the weights in the boundary of previously drawn
cone. As we have just seen, we can get to other weight spaces from Mλ by successively applying
E21.
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λ

Notice that λ([E12, E21]) ∈ Z is the right-most eigenvalue of the sl2(K)-module
⊕

k∈Z Mλ−k(ε1−ε2)
.

In particular, λ([E12, E21]) must be positive. In addition, since the eigenspace of the eigenvalue
λ([E12, E21])− 2k of the action of h on

⊕
k∈N Mλ−k(ε1−ε2)

is Mλ−k(ε1−ε2)
, the weights of M appear-

ing the string λ, λ + (ε1 − ε2), . . . , λ + k(ε1 − ε2), . . . must be symmetric with respect to the line
κ(ε1 − ε2, α) = 0. The picture is thus

0
λ

κ(ε1 − ε2, α) = 0

We could apply this same argument to the subspace
⊕

k Mλ−k(ε2−ε3)
, so that the weights in

this subspace must be symmetric with respect to the line κ(ε2 − ε3, α) = 0. The picture is now

0
λ

κ(ε1 − ε2, α) = 0

κ(ε2 − ε3, α) = 0

Needless to say, we could keep applying this method to the weights at the ends of our string,
arriving at

λ
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We claim all dots µ lying inside the hexagon we have drawn must also be weights – i.e. Mµ 6= 0.
Indeed, by applying the same argument to an arbitrary weight ν in the boundary of the hexagon
we get a sl2(K)-module whose weights correspond to weights of M lying in a string inside the
hexagon, and whose right-most weight is precisely the weight of M we started with.

ν

λ

By construction, ν corresponds to the right-most weight of a sl2(K)-module, so that all dots
lying on the dashed string must occur in sl2(K)-module. Hence they must also be weights of M.
The final picture is thus

λ

This final picture is known as the weight diagram of M. Finally. . .

Theorem 3.15. The weights of M are precisely the elements of the weight lattice P congruent to
λ module the sublattice Q and lying inside hexagon with vertices the images of λ under the group
generated by reflections across the lines κ(εi − εj, α) = 0.

Having found all of the weights of M, the only thing we are missing is an existence and
uniqueness theorem analogous to Theorem 3.4. It is clear from the symmetries of the locus of
weights found in Theorem 3.15 that if λ ∈ P is the highest weight of some finite-dimensional
simple sl3(K)-module M then λ lies in the cone N〈ε1,−ε3〉. What’s perhaps more surprising is
the fact that this condition is sufficient for the existence of such a M. In other words, our next goal
is establishing. . .

Definition 3.16. An element λ ∈ P is called dominant if it lies in the cone N〈ε1,−ε3〉.

Theorem 3.17. For each dominant λ ∈ P, there exists precisely one finite-dimensional simple
sl3(K)-module M whose highest weight is λ.

To proceed further we once again refer to the approach we employed in the case of sl2(K):
next we showed in Proposition 3.1 that any simple sl2(K)-module is spanned by the images of its
highest weight vector under f . A more abstract way of putting it is to say that a simple sl2(K)-
module M of is spanned by the images of its highest weight vector under successive applications
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of the action of half of the root spaces of sl2(K). The advantage of this alternative formulation is,
of course, that the same holds for sl3(K). Specifically. . .

Proposition 3.18. Given a simple sl3(K)-module M and a highest weight vector m ∈ M, M is
spanned by the images of m under successive applications of E21, E31 and E32.

Proof. Given the fact M is simple, it suffices to show that the subspace N spanned by successive
applications of E21, E31 and E32 to m is stable under the action of sl3(K). In addition, since
[E21, E31] = [E31, E32] = 0 and [E21, E32] = −E31, all successive product of E21, E31 and E32 in
U(sl3(K)) can be written as Ea

21Eb
31Ec

31 for some a, b and c, so that N is spanned by the elements
Ea

21Eb
31Ec

31 · m.
Recall that Eij maps Mµ to Mµ+εi−εj . In particular, Ea

21Eb
31Ec

31 ·m ∈ Mλ−a(ε1−ε2)−b(ε1−ε3)−c(ε2−ε3)
.

In other words,

HEa
21Eb

31Ec
31 · m = (λ − a(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))(H)Ea

21Eb
31Ec

31 · m ∈ N

for all H ∈ h and N is stable under the action of h. On the other hand, N is clearly stable under
the action of E21, E31 and E32. All it is left is to show N is stable under the action of E12, E13 and
E23.

We begin by analyzing the case of E12. We have

E12Ea
21Eb

31Ec
32 · m = ([E12, E21] + E21E12)Ea−1

21 Eb
31Ec

32 · m

= E21([E12, E21] + E21E12)Ea−2
21 Eb

31Ec
32 · m

+ (λ − (a − 1)(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))([E12, E21])Ea−1
21 Eb

31Ec
32 · m

= E2
21([E12, E21] + E21E12)Ea−3

21 Eb
31Ec

32 · m

+ (λ − (a − 1)(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))([E12, E21])Ea−1
21 Eb

31Ec
32 · m

+ (λ − (a − 2)(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))([E12, E21])Ea−2
21 Eb

31Ec
32 · m

...

= Ea
21E12Eb

31Ec
32 · m

+ (λ − (a − 1)(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))([E12, E21])Ea−1
21 Eb

31Ec
32 · m

+ (λ − (a − 2)(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))([E12, E21])Ea−2
21 Eb

31Ec
32 · m

...

+ (λ − (a − a)(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))([E12, E21])Ea−a
21 Eb

31Ec
32 · m

Since (λ − (a − k)(ε1 − ε2)− b(ε1 − ε3)− c(ε2 − ε3))([E12, E21])Ea−k
21 Eb

31Ec
32 · m ∈ N for all k, it

suffices to show Ea
21E12Eb

31Ec
32 · m ∈ N. But

E12Eb
31 = (E31E12 − E32)Eb−1

31

= E31E12Eb−1
31 − E31E32Eb−1

31

= E31(E31E12 − E32)Eb−2
31 − E32Eb

31

...

= Eb
31E12 − bE32Eb

31

,

given [E12, E31] = −E32 and [E32, E31] = 0. It then follows from the fact E12 · m = 0 that

Ea
21E12Eb

31Ec
32 · m = Ea

21Eb
31Ec

32E12 · m − bEa
21Eb

31Ec+1
32 · m = −bEa

21Eb
31Ec+1

32 · m ∈ N,
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given that E12 and E32 commute. Hence E12 · (Ea
21Eb

31Ec
32 · m) ∈ N. Similarly,

E13 · (Ea
21Eb

31Ec
32 · m), E23 · (Ea

21Eb
31Ec

32 · m) ∈ N

�

The same argument also goes to show. . .

Corollary 3.19. Given a finite-dimensional sl3(K)-module M with highest weight λ and m ∈ Mλ,
the subspace spanned by successive applications of E21, E31 and E32 to m is a simple submodule
whose highest weight is λ.

This is very interesting to us since it implies that finding any finite-dimensional module whose
highest weight is λ is enough for establishing the “existence” part of Theorem 3.17. Moreover,
constructing such a module turns out to be quite simple.

Proof of existence. Take λ = kε1 − `ε3 ∈ P with k, ` > 0, so that λ is dominant. Consider the natural
sl3(K)-module K3. We claim that the highest weight of Symk K3 ⊗ Sym`(K3)∗ is λ.

First of all, notice that the weight vector of K3 are the canonical basis elements e1, e2 and e3,
whose corresponding weights are ε1, ε2 and ε3 respectively. Hence the weight diagram of K3 is

ε1

ε2

ε3

and ε1 is the highest weight of K3.
On the one hand, if { f1, f2, f3} is the dual basis for {e1, e2, e3} then H · fi = −εi(H) fi for each

H ∈ h, so that the weights of (K3)∗ are precisely the opposites of the weights of K3. In other
words,

−ε1

−ε2

−ε3

is the weight diagram of (K3)∗ and ε3 is the highest weight of (K3)∗.
On the other hand if we fix two sl3(K)-modules N and L, by computing

H · (n ⊗ l) = H · n ⊗ l + n ⊗ H · l
= λ(H)n ⊗ l + n ⊗ µ(H)l
= (λ + µ)(H) (n ⊗ l)

for each H ∈ h, n ∈ Nλ and l ∈ Lµ we can see that the weights of N ⊗ L are precisely the sums of
the weights of N with the weights of L.

This implies that the highest weights of Symk K3 and Sym`(K3)∗ are kε1 and −`ε3 respectively
– with highest weight vectors ek

1 and f `3 . Furthermore, by the same token the highest weight of
Symk K3 ⊗ Sym`(K3)∗ must be λ = ke1 − `e3 – with highest weight vector ek

1 ⊗ f `3 . �
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The “uniqueness” part of Theorem 3.17 is even simpler than that.

Proof of uniqueness. Let M and N be two simple sl3(K)-modules with highest weight λ. By Theo-
rem 3.15, the weights of M are precisely the same as those of N.

Now by computing

H · (m + n) = H · m + H · n = µ(H)m + µ(H)n = µ(H)(m + n)

for each H ∈ h, m ∈ Mµ and n ∈ Nµ, we can see that the weights of M ⊕ N are same as those
of M and N. Hence the highest weight of M ⊕ N is λ – with highest weight vectors given by the
sum of highest weight vectors of M and N.

Fix some m ∈ Mλ and n ∈ Nλ and consider the submodule L = U(sl3(K)) · m + n ⊆ M ⊕ N
generated by m + n. Since m + n is a highest weight of M ⊕ N, it follows from corollary 3.19 that
L is simple. The projection maps π1 : L −→ M, π2 : L −→ N, being nonzero homomorphism
between simple sl3(K)-modules, must be isomorphism. Finally,

M ∼= L ∼= N

�

We have been very successful in our pursue for a classification of the simple modules of sl2(K)
and sl3(K), but so far we have mostly postponed the discussion on the motivation behind our
methods. In particular, we did not explain why we chose h and h, and neither why we chose
to look at their eigenvalues. Apart from the obvious fact we already knew it would work a
priory, why did we do all that? In the following chapter we will attempt to answer this question
by looking at what we did in the last chapter through more abstract lenses and studying the
representations of an arbitrary finite-dimensional semisimple Lie algebra g.



Chapter 4

Finite-Dimensional Simple Modules

In this chapter we classify the finite-dimensional simple g-modules for a finite-dimensional semisim-
ple Lie algebra g over K. At the heart of our analysis of sl2(K) and sl3(K) was the decision to
consider the eigenspace decomposition

M =
⊕

λ

Mλ (4.1)

This was simple enough to do in the case of sl2(K), but the rational behind it and the reason
why equation (4.1) holds are harder to explain in the case of sl3(K). The eigenspace decomposition
associated with an operator M −→ M is a very well-known tool, and readers familiarized with
basic concepts of linear algebra should be used to this type of argument. On the other hand, the
eigenspace decomposition of M with respect to the action of an arbitrary subalgebra h ⊆ gl(M) is
neither well-known nor does it hold in general: as indicated in the previous chapter, it may very
well be that ⊕

λ∈h∗
Mλ ( M

We should note, however, that these two cases are not as different as they may sound at first
glance. Specifically, we can regard the eigenspace decomposition of a sl2(K)-module M with
respect to the eigenvalues of the action of h as the eigenvalue decomposition of M with respect
to the action of the subalgebra h = Kh ⊆ sl2(K). Furthermore, in both cases h ⊆ sln(K) is the
subalgebra of diagonal matrices, which is Abelian. The fundamental difference between these two
cases is thus the fact that dim h = 1 for h ⊆ sl2(K) while dim h > 1 for h ⊆ sl3(K). The question
then is: why did we choose h with dim h > 1 for sl3(K)?

The rational behind fixing an Abelian subalgebra h is a simple one: we have seen in the pre-
vious chapter that representations of Abelian algebras are generally much simpler to understand
than the general case. Thus it make sense to decompose a given g-module M of into subspaces
invariant under the action of h, and then analyze how the remaining elements of g act on these
subspaces. The bigger h is, the simpler our problem gets, because there are fewer elements outside
of h left to analyze.

Hence we are generally interested in maximal Abelian subalgebras h ⊆ g, which leads us to
the following definition.

Definition 4.1. A subalgebra h ⊆ g is called a Cartan subalgebra of g if is self-normalizing –
i.e. [X, H] ∈ h for all H ∈ h if, and only if X ∈ h – and nilpotent. Equivalently for reductive
g, h is called a Cartan subalgebra of g if it is Abelian, ad(H) is diagonalizable for each H ∈ h
and if h is maximal with respect to the former two properties.

Proposition 4.2. There exists a Cartan subalgebra h ⊆ g.

39
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Proof. Notice that 0 ⊆ g is an Abelian subalgebra whose elements act as diagonal operators via the
adjoint g-module. Indeed, 0, the only element of 0 ⊆ g, is such that ad(0) = 0 is a diagonalizable
operator. Furthermore, given a chain of Abelian subalgebras

0 ⊆ h1 ⊆ h2 ⊆ · · ·

such that ad(H) is a diagonal operator for each H ∈ hi, the subalgebra
⋃

i hi ⊆ g is Abelian, and its
elements also act diagonally in g. It then follows from Zorn’s Lemma that there exists a subalgebra
h which is maximal with respect to both these properties, also known as a Cartan subalgebra. �

We have already seen some concrete examples. Namely. . .

Example 4.3. The Lie subalgebra

h =


K 0 · · · 0
0 K · · · 0
...

...
. . .

...
0 0 · · · K

 ⊆ gln(K)

of diagonal matrices is a Cartan subalgebra. Indeed, every pair of diagonal matrices commutes,
so that h is an Abelian – and hence nilpotent – subalgebra. A simple calculation also shows that if
i 6= j then the coefficient of Eij in [Eii, X] is the same as the coefficient of Eij in X, for all X ∈ gln(K).
In particular, if [Eii, X] is diagonal for all i, then so is X – i.e. h is self-normalizing.

Example 4.4. Let h be as in Example 4.3. Then the subalgebra h ∩ sln(K) of traceless diagonal
matrices is a Cartan subalgebra of sln(K).

Example 4.5. It is easy to see from Example 1.11 that h = {X ∈ sp2n(K) : X is diagonal} is a
Cartan subalgebra.

Example 4.6. Let g1 and g2 be Lie algebras and hi ⊆ gi be Cartan subalgebras. Then h1 ⊕ h2 is a
Cartan subalgebra of g1 ⊕ g2.

The intersection of such subalgebra with sln(K) – i.e. the subalgebra of traceless diagonal
matrices – is a Cartan subalgebra of sln(K). In particular, if n = 2 or n = 3 we get to the
subalgebras described the previous chapter. The remaining question then is: if h ⊆ g is a Cartan
subalgebra and M is a g-module, does the eigenspace decomposition

M =
⊕

λ

Mλ

of M hold? The answer to this question turns out to be yes. This is a consequence of something
known as simultaneous diagonalization, which is the primary tool we will use to generalize the
results of the previous section. What is simultaneous diagonalization all about then?

Definition 4.7. Given a K-vector space V, a set of operators {Tj : V −→ V}j is called
simultaneously diagonalizable if there is a basis {v1, . . . , vn} for V such that Tjvi is a scalar
multiple of vi, for all i, j.

Proposition 4.8. Given a finite-dimensional vector space V, a set of diagonalizable operators
V −→ V is simultaneously diagonalizable if, and only if all of its elements commute with one
another.

We should point out that simultaneous diagonalization only works in the finite-dimensional set-
ting. In fact, simultaneous diagonalization is usually framed as an equivalent statement about
diagonalizable n × n matrices. Simultaneous diagonalization implies that to show M =

⊕
λ Mλ it
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suffices to show that H �M : M −→ M is a diagonalizable operator for each H ∈ h. To that end, we
introduce the Jordan decomposition of an operator and the abstract Jordan decomposition of a semisimple
Lie algebra.

Proposition 4.9 (Jordan). Given a finite-dimensional vector space V and an operator T : V −→
V, there are unique commuting operators Tss, Tnil : V −→ V, with Tss diagonalizable and Tnil
nilpotent, such that T = Tss + Tnil. The pair (Tss, Tnil) is known as the Jordan decomposition
of T.

Proposition 4.10. Given g semisimple and X ∈ g, there are Xss, Xnil ∈ g such that X = Xss +
Xnil, [Xss, Xnil] = 0, ad(Xss) is a diagonalizable operator and ad(Xnil) is a nilpotent operator. The
pair (Xss, Xnil) is known as the Jordan decomposition of X.

It should be clear from the uniqueness of ad(X)ss and ad(X)nil that the Jordan decomposition
of ad(X) is ad(X) = ad(Xss) + ad(Xnil). What is perhaps more remarkable is the fact this holds
for any finite-dimensional g-module. In other words. . .

Proposition 4.11. Let M be a finite-dimensional g-module and X ∈ g. Denote by X �M the action
of X on M. Then Xss �M= (X �M)ss and Xnil �M= (X �M)nil.

This last result is known as the preservation of the Jordan form, and a proof can be found in
appendix C of [FH91]. As promised this implies. . .

Corollary 4.12. Let g be a semisimple Lie algebra, h ⊆ g be a Cartan subalgebra and M be
any finite-dimensional g-module. Then there is a basis {m1, . . . , mr} of M so that each mi is
simultaneously an eigenvector of all elements of h – i.e. each element of h acts as a diagonal matrix
in this basis. In other words, there are linear functionals λi ∈ h∗ so that H · mi = λi(H)mi for all
H ∈ h. In particular,

M =
⊕

λ∈h∗
Mλ

Proof. Fix some H ∈ h. It suffices to show that H �M : M −→ M is a diagonalizable operator.
If we write H = Hss + Hnil for the abstract Jordan decomposition of H, we know ad(Hss) =

ad(H)ss. But ad(H) is a diagonalizable operator, so that ad(H)ss = ad(H). This implies ad(Hnil) =
ad(H)nil = 0, so that Hnil is a central element of g. Since g is semisimple, Hnil = 0. Proposition 4.11
then implies (H �M)nil = Hnil �M= 0, so H �M= (H �M)ss is a diagonalizable operator. �

We should point out that this last proof only works for semisimple Lie algebras. This is
because we rely heavily on Proposition 4.11, as well in the fact that semisimple Lie algebras are
centerless. In fact, Corollary 4.12 fails even for reductive Lie algebras. For a counterexample,
consider the algebra g = K: the Cartan subalgebra of g is g itself, and a g-module is simply a
vector space M endowed with an operator M −→ M – which corresponds to the action of 1 ∈ g
on M. In particular, if we choose an operator M −→ M which is not diagonalizable we find
M 6= ⊕

λ∈h∗ Mλ.
However, Corollary 4.12 does work for reductive g if we assume that the g-module M in

question is simple, since central elements of g act on simple g-modules as scalar operators. The
hypothesis of finite-dimensionality is also of huge importance. For instance, consider. . .

Example 4.13. Let U(g) denote the regular g-module. Notice that U(g)λ = 0 for all λ ∈ h∗.
Indeed, since U(g) is a domain, if (H − λ(H))u = 0 for some nonzero H ∈ h then u = 0. In
particular, ⊕

λ∈h∗
U(g)λ = 0 6= U(g)
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As a first consequence of Corollary 4.12 we show. . .

Corollary 4.14. The restriction of the Killing form κ to h is non-degenerate.

Proof. Consider the root space decomposition g = g0 ⊕
⊕

α gα of the adjoint g-module, where α
ranges over all nonzero eigenvalues of the adjoint action of h. We claim g0 = h.

Indeed, since h is Abelian, ad(h)h = 0 – i.e. h ⊆ g0. On the other hand, since h is self-
normalizing, if [X, H] = 0 ∈ h for all H ∈ h then X ∈ h – i.e. g0 ⊆ h. So the eigenspace
decomposition becomes

g = h⊕
⊕

α

gα

We furthermore claim that h = g0 is orthogonal to gα with respect to κ for any α 6= 0. Indeed,
given X ∈ gα and H1, H2 ∈ h with α(H1) 6= 0 we have

α(H1) · κ(X, H2) = κ([H1, X], H2) = −κ([X, H1], H2) = −κ(X, [H1, H2]) = 0

Hence the non-degeneracy of κ implies the non-degeneracy of its restriction. �

We should point out that the restriction of κ to h is not the Killing form of h. In fact, since h is
Abelian, its Killing form is identically zero – which is hardly ever a non-degenerate form.

Remark. Since κ induces an isomorphism h
∼−−→ h∗, it induces a bilinear form (κ(X, ·), κ(Y, ·)) 7−→

κ(X, Y) in h∗. As in section 3.1, we denote this form by κ as well.

We now have most of the necessary tools to reproduce the results of the previous chapter in a
general setting. Let g be a finite-dimensional semisimple algebra with a Cartan subalgebra h and
let M be a finite-dimensional simple g-module. We will proceed, as we did before, by generalizing
the results of the previous two sections in order. By now the pattern should be starting to become
clear, so we will mostly omit technical details and proofs analogous to the ones on the previous
sections. Further details can be found in appendix D of [FH91] and in [E H73].

4.1 The Geometry of Roots and Weights

We begin our analysis, as we did for sl2(K) and sl3(K), by investigating the locus of roots of and
weights of g. Throughout chapter 3 we have seen that the weights of any given finite-dimensional
module of sl2(K) or sl3(K) can only assume very rigid configurations. For instance, we have seen
that the roots of sl2(K) and sl3(K) are symmetric with respect to the origin. In this chapter we will
generalize most results from chapter 3 regarding the rigidity of the geometry of the set of weights
of a given module.

As for the aforementioned result on the symmetry of roots, this turns out to be a general fact,
which is a consequence of the non-degeneracy of the restriction of the Killing form to the Cartan
subalgebra.

Proposition 4.15. The roots α of g are symmetrical about the origin – i.e. −α is also a root – and
they span all of h∗.

Proof. We will start with the first claim. Let α and β be two roots. Notice [gα, gβ] ⊆ gα+β. Indeed,
if X ∈ gα and Y ∈ gβ then

[H, [X, Y]] = [X, [H, Y]]− [Y, [H, X]] = (α + β)(H) · [X, Y]

for all H ∈ h.
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This implies that if α + β 6= 0 then ad(X) ad(Y) is nilpotent: if Z ∈ gγ then

(ad(X) ad(Y))rZ = [X, [Y, [. . . , [X, [Y, Z]]] . . .] ∈ grα+rβ+γ = 0

for r large enough. In particular, κ(X, Y) = Tr(ad(X) ad(Y)) = 0. Now if −α is not an eigenvalue
we find κ(X, gβ) = 0 for all roots β, which contradicts the non-degeneracy of κ. Hence −α must
be an eigenvalue of the adjoint action of h.

For the second statement, note that if the roots of g do not span all of h∗ then there is some
nonzero H ∈ h such that α(H) = 0 for all roots α, which is to say, ad(H)X = [H, X] = 0 for
all X ∈ g. Another way of putting it is to say H is an element of the center z = 0 of g, a
contradiction. �

Furthermore, as in the case of sl2(K) and sl3(K) one can show. . .

Proposition 4.16. The root spaces gα are all 1-dimensional.

The proof of the first statement of Proposition 4.15 highlights something interesting: if we fix
some eigenvalue α of the adjoint action of h on g and a eigenvector X ∈ gα, then for each H ∈ h
and m ∈ Mλ we find

H · (X · m) = XH · m + [H, X] · m = (λ + α)(H)X · m

Thus X sends m to Mλ+α. We have encountered this formula twice in these notes: again, we
find gα acts on M by translating vectors between eigenspaces. In particular, if we denote by ∆ the set
of all roots of g then. . .

Theorem 4.17. The weights of a finite-dimensional simple g-module M are all congruent modulo
the root lattice Q = Z∆ of g. In other words, all weights of M lie in the same Q-coset ξ ∈ h∗/Q.

Again, we may leverage our knowledge of sl2(K) to obtain further restrictions on the geometry
of the locus of weights of M. Namely, as in the case of sl3(K) we show. . .

Proposition 4.18. Given a root α of g the subspace sα = gα ⊕ g−α ⊕ [gα, g−α] is a subalgebra
isomorphic to sl2(K).

Corollary 4.19. For all weights µ, the subspace⊕
k

Mµ−kα

is invariant under the action of the subalgebra sα and the weight spaces in this string match the
eigenspaces of h.

The proof of Proposition 4.18 is very technical in nature and we won’t include it here, but the
idea behind it is simple: recall that gα and g−α are both 1-dimensional, so that dim[gα, g−α] is at
most 1. We check that [gα, g−α] 6= 0 and that no generator of [gα, g−α] is annihilated by α, so that
by adjusting scalars we can find Eα ∈ gα and Fα ∈ g−α such that Hα = [Eα, Fα] satisfies

[Hα, Fα] = −2Fα [Hα, Eα] = 2Eα

The elements Eα, Fα ∈ g are not uniquely determined by this condition, but Hα is. As promised,
the second statement of Corollary 4.19 imposes strong restrictions on the weights of M. Namely,
if λ is a weight, λ(Hα) is an eigenvalue of h on some sl2(K)-module, so it must be an integer. In
other words. . .
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Definition 4.20. The lattice P = {λ ∈ h∗ : λ(Hα) ∈ Z ∀α ∈ ∆} ⊆ h∗ is called the weight
lattice of g. We call the elements of P integral.

Proposition 4.21. The weights of a finite-dimensional simple g-module M of all lie in the weight
lattice P.

Proposition 4.21 is clearly analogous to Corollary 3.12. In fact, the weight lattice of sl3(K) – as
in Definition 4.20 – is precisely Z〈ε1, ε2, ε3〉. To proceed further, we would like to take the highest
weight of M as in section 3.1, but the meaning of highest is again unclear in this situation. We could
simply fix a linear function QP −→ Q – as we did in section 3.1 – and choose a weight λ of M that
maximizes this functional, but at this point it is convenient to introduce some additional tools to
our arsenal. These tools are called basis.

Definition 4.22. A subset Σ = {β1, . . . , βr} ⊆ ∆ of linearly independent roots is called a
basis for ∆ if, given α ∈ ∆, there are unique k1, . . . , kr ∈ N such that α = ±(k1β1 + · · ·+
krβr).

Example 4.23. Suppose g = sln(K) and h ⊆ g is the subalgebra of diagonal matrices, as in Ex-
ample 4.4. Consider the linear functionals ε1, . . . , εn ∈ h∗ such that εi(H) is the i-th entry of the
diagonal of H. As observed in section 3.1 for n = 3, the roots of sln(K) are εi − εj for i 6= j – with
root vectors given by Eij – and we may take the basis Σ = {β1, . . . , βn−1} with βi = εi − εi+1.

Example 4.24. Suppose g = sp2n(K) and h ⊆ g is the subalgebra of diagonal matrices, as in
Example 4.5. Consider the linear functionals ε1, . . . , εn ∈ h∗ such that εi(H) is the i-th entry of the
diagonal of H. Then the roots of sp2n(K) are ±εi ± εj for i 6= j and ±2εi – see [FH91, ch. 16]. In
this case, we may take the basis Σ = {β1, . . . , βn} with βi = εi − εi+1 for i < n and βn = 2εn.

The interesting thing about basis for ∆ is that they allow us to compare weights of a given
g-module. At this point the reader should be asking himself: how? Definition 4.22 isn’t exactly all
that intuitive. Well, the thing is that any choice of basis Σ induces an order in Q, where elements
are ordered by their Σ-coordinates.

Definition 4.25. Let Σ = {β1, . . . , βr} be a basis for ∆. Given α = k1β1 + · · ·+ krβr ∈ Q
with k1, . . . , kr ∈ Z, we call the vector αΣ = (k1, . . . , kr) ∈ Zr the Σ-coordinate of α. We say
that α 4 β if αΣ 6 βΣ in the lexicographical order.

Definition 4.26. Given a basis Σ for ∆, there is a canonical partition1 ∆+ ∪ ∆− = ∆, where
∆+ = {α ∈ ∆ : α � 0} and ∆− = {α ∈ ∆ : α ≺ 0}. The elements of ∆+ and ∆− are called
positive and negative roots, respectively.

Example 4.27. If g = sl3(K) and Σ is as in Example 4.23 then the partition ∆+ ∪ ∆− induced by Σ
is the same as the one described in section 3.1.

Definition 4.28. Let Σ be a basis for ∆. The subalgebra b = h⊕⊕
α∈∆+ gα is called the Borel

subalgebra associated with h and Σ. A subalgebra p ⊆ g is called parabolic if p ⊇ b.

It should be obvious that the binary relation 4 in Q is a total order. In addition, we may
compare the elements of a given Q-coset λ+ Q by comparing their difference with 0 ∈ Q. In other

1Notice that ht(α) = 0 if, and only if α = 0. Since 0 is, by definition, not a root, the sets ∆+ and ∆− account for all roots.
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words, given λ ∈ µ + Q, we say λ 4 µ if λ − µ 4 0. In particular, since the weights of M all lie
in a single Q-coset, we may compare them in this way. Given a basis Σ for ∆ we may take “the
highest weight of M” as a maximal weight λ of M. The obvious question then is: can we always
find a basis for ∆?

Proposition 4.29. There is a basis Σ for ∆.

The intuition behind the proof of this proposition is similar to our original idea of fixing a
direction in h∗ in the case of sl3(K). Namely, one can show that κ(α, β) ∈ Z for all α, β ∈ ∆, so
that the Killing form κ restricts to a nondegenerate Q-bilinear form Q∆ × Q∆ −→ Q. We can then
fix a nonzero vector γ ∈ Q∆ and consider the orthogonal projection f : Q∆ −→ Qγ ∼= Q. We say
a root α ∈ ∆ is positive if f (α) > 0, and we call a positive root α simple if it cannot be written as the
sum two other positive roots. The subset Σ ⊆ ∆ of all simple roots is a basis for ∆, and all other
basis can be shown to arise in this way.

Fix some basis Σ for ∆, with corresponding decomposition ∆+ ∪ ∆− = ∆. Let λ be a maximal
weight of M. We call λ the highest weight of M, and we call any nonzero m ∈ Mλ a highest
weight vector. The strategy then is to describe all weight spaces of M in terms of λ and m, as in
Theorem 3.15. Unsurprisingly we do so by reproducing the proof of the case of sl3(K).

First, we note that any highest weight vector m ∈ Mλ is annihilated by all positive root spaces,
for if α ∈ ∆+ then Eα · m ∈ Mλ+α must be zero – or otherwise we would have that λ + α is a
weight with λ ≺ λ + α. In particular,⊕

k∈Z

Mλ−kα =
⊕
k∈N

Mλ−kα

and λ(Hα) is the right-most eigenvalue of the action of h on the sl2(K)-module
⊕

k Mλ−kα.
This has a number of important consequences. For instance. . .

Corollary 4.30. If α ∈ ∆+ and σα : h∗ −→ h∗ is the reflection in the hyperplane perpendicular
to α with respect to the Killing form, the weights of M occurring in the line joining λ and σα are
precisely the µ ∈ P lying between λ and σα(λ).

Proof. Notice that any µ ∈ P in the line joining λ and σα(λ) has the form µ = λ − kα for some
k, so that Mµ corresponds the eigenspace associated with the eigenvalue λ(Hα)− 2k of the action
of h on

⊕
k Mλ−kα. If µ lies between λ and σα(λ) then k lies between 0 and λ(Hα), in which case

Mµ 6= 0 and therefore µ is a weight.
On the other hand, if µ does not lie between λ and σα(λ) then either k < 0 or k > λ(Hα).

Suppose µ is a weight. In the first case µ � λ, a contradiction. On the second case the fact that
Mµ 6= 0 implies Mλ+(k−λ(Hα))α = Mσα(µ) 6= 0, which contradicts the fact that Mλ+`α = 0 for all
` > 0. �

This is entirely analogous to the situation of sl3(K), where we found that the weights of the
simple sl3(K)-modules formed continuous strings symmetric with respect to the lines Kα with
κ(εi − εj, α) = 0. As in the case of sl3(K), the same sort of arguments leads us to the conclusion. . .

Definition 4.31. We refer to the (finite) group W = 〈σα : α ∈ ∆〉 = 〈σβ : β ∈ Σ〉 ⊆ O(h∗) as
the Weyl group of g.

Theorem 4.32. The weights of a simple g-module M with highest weight λ are precisely the ele-
ments of the weight lattice P congruent to λ modulo the root lattice Q lying inside the convex hull
of the orbit of λ under the action of the Weyl group W.
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At this point we are basically done with results regarding the geometry of the weights of M,
but it is convenient to introduce some further notation. Aside from showing up in the previous
theorem, the Weyl group will also play an important role in chapter 5 by virtue of the existence of
a canonical action of W on h.

Definition 4.33. The canonical action of W on h∗ given by σ · λ = σ(λ) is called the natural
action of W. We also consider the equivalent “shifted” action σ • λ = σ(λ + ρ)− ρ of W on
h∗, known as the dot action of W – here ρ = 1/2β1 + · · · 1/2βr.

This already allow us to compute some examples of Weyl groups.

Example 4.34. Suppose g = sln(K) and h ⊆ g is as in Example 4.4. Let ε1, . . . , εn ∈ h∗ be as
in Example 4.23 and take the associated basis Σ = {β1, . . . , βn−1} for ∆, βi = εi − εi+1. Then a
simple calculation shows that σβi permutes εi and εi+1 and fixes the other εj. This translates to a
canonical isomorphism

W ∼−−→ Sn

σβi 7−→ σi = (i i+1)

Example 4.35. Suppose g = sp2n(K) and h ⊆ g is as in Example 4.5. Let ε1, . . . , εn ∈ h∗ be as
in Example 4.24 and take the associated basis Σ = {β1, . . . , βn} for ∆. Then a simple calculation
shows that σβi permutes εi and εi+1 for i < n and σβn switches the sign of εn. This translates to a
canonical isomorphism

W ∼−−→ Sn n (Z/2Z)n

σβi 7−→ (σi, (0̄, . . . , 0̄))

σβn 7−→ (1, (0̄, . . . , 0̄, 1̄)),

where σi = (i i+1) are the canonical transpositions.

If we conjugate some σ ∈ W by the isomorphism h∗
∼−−→ h afforded by the restriction of the

Killing for to h we get a linear action of W on h, which is given by κ(σ · H, ·) = σ · κ(H, ·). As it
turns out, this action can be extended to an action of W on g by automorphisms of Lie algebras.
This translates into the following results, which we do not prove – but see [E H73, sec. 14.3].

Proposition 4.36. Given α ∈ ∆+, there is an automorphism of Lie algebras fα : g ∼−−→ g such that
fα(H) = σα · H for all H ∈ h. In addition, these automorphisms can be chosen in such a way that
the family { fα}α∈∆+ defines an action of W on g – which is obviously compatible with the natural
action of W on h.

Remark. We should notice the action of W on g from Proposition 4.36 is not canonical, since it
depends on the choice of Eα and Fα. Nevertheless, different choices of Eα and Fα yield isomorphic
actions and the restriction of these actions to h is independent of any choices.

We should point out that the results in this section regarding the geometry roots and weights
are only the beginning of a well develop axiomatic theory of the so called root systems, which
was used by Cartan in the early 20th century to classify all finite-dimensional simple complex Lie
algebras in terms of Dynking diagrams. This and much more can be found in [E H73, p. III] and
[FH91, ch. 21]. Having found all of the weights of M, the only thing we are missing for a complete
classification is an existence and uniqueness theorem analogous to Theorem 3.4 and Theorem 3.17.
This will be the focus of the next section.
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4.2 Highest Weight Modules & the Highest Weight Theorem

It is already clear from the previous discussion that if λ is the highest weight of M then λ(Hα) > 0
for all positive roots α. Indeed, as in the sl3(K), for each α ∈ ∆+ we know λ(Hα) is the highest
eigenvalue of the action of h in the sl2(K)-module

⊕
k Mλ−kα – which must be a non-negative

integer. This fact may be summarized in the following proposition.

Definition 4.37. An element λ of P such that λ(Hα) > 0 for all α ∈ ∆+ is referred to as an
dominant integral weight of g. The set of all dominant integral weights is denotes by P+.

Proposition 4.38. Suppose M is a finite-dimensional simple g-module and λ is its highest weight.
Then λ is a dominant integral weight of g.

The condition that λ ∈ P+ is thus necessary for the existence of a simple g-module with
highest weight given by λ. Given our previous experience with sl2(K) and sl3(K), it is perhaps
unsurprising that this condition is also sufficient.

Theorem 4.39. For each dominant integral λ ∈ P+ there exists precisely one finite-dimensional
simple g-module M whose highest weight is λ.

This is known as the Highest Weight Theorem, and its proof is the focus of this section. The
“uniqueness” part of the theorem follows at once from the arguments used for sl3(K). However,
the “existence” part of the theorem is more nuanced. Our first instinct is, of course, to try to
generalize the proof used for sl3(K). Indeed, as in Proposition 3.14, one is able to show. . .

Proposition 4.40. Let M be a finite-dimensional simple g-module. Then there exists a nonzero
weight vector m ∈ M which is annihilated by all positive root spaces of g – i.e. X · m = 0 for all
X ∈ gα, α ∈ ∆+.

Proof. If λ is the highest weight of M, it suffices to take any m ∈ Mλ. Indeed, given X ∈ gα with
α ∈ ∆+, X · m ∈ Mλ+α = 0 because λ + α � λ. �

Unfortunately for us, this is where the parallels with Proposition 3.14 end. The issue is that
our proof relied heavily on our knowledge of the roots of sl3(K). It is thus clear that we need a
more systematic approach for the general setting. We begin by asking a simpler question: how
can we construct any g-module M whose highest weight is λ? In the process of answering this
question we will come across a surprisingly elegant solution to our problem.

If M is a finite-dimensional simple module with highest weight λ and m ∈ Mλ, we already
know that X · m = 0 for any m ∈ Mλ and X ∈ gα, α ∈ ∆+. Since M = U(g) · m, the restriction of
M to the Borel subalgebra b ⊆ g has a prescribed action. On the other hand, we have essentially
no information about the action of the rest of g on M. Nevertheless, given a b-module we may
obtain a g-module by freely extending the action of b via induction. This leads us to the following
definition.

Definition 4.41. Given λ ∈ h∗, consider the b-module Km+ where H · m+ = λ(H)m+ for
all H ∈ h and X · m+ = 0 for X ∈ gα with α ∈ ∆+. The g-module M(λ) = Indg

b Km+ is
called the Verma module of weight λ.

Example 4.42. If g = sl2(K), then we can take h = Kh and b = Ke ⊕ Kh. In this setting, the linear
map g : h∗ −→ K defined by g(h) = 1 affords us a canonical identification h∗ = Kg ∼= K, so that
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given λ ∈ K we may denote M(λg) simply by M(λ). Using this notation M(λ) =
⊕

k>0 K f k · m+,
and the action of sl2(K) on M(λ) is given by formula (4.2).

f k · m+ e7−→ k(λ + 1 − k) f k−1 · m+ f k · m+ f7−→ f k+1 · m+ f k · m+ h7−→ (λ − 2k) f k · m+ (4.2)

Example 4.43. Consider the sl2(K)-module M(2) as described in Example 4.42. It follows from
formula (4.2) that the action of sl2(K) on M(2) is given by

· · · M(2)−6 M(2)−4 M(2)−2 M(2)0 M(2)2

−10 −4

1

0

1

2

1

2

1 1

where M(2)2−2k = K f k · m+. Here the top arrows represent the action of e and the bottom arrows
represent the action of f . The scalars labeling each arrow indicate to which multiple of f k±1 · m+

the elements e and f send f k · m+. The string of weight spaces to the left of the diagram is
infinite. Since e · ( f 3 · m+) = 0, it is easy to see that subspace

⊕
k>3 K f k · m+ is a (maximal)

sl2(K)-submodule, which is isomorphic to M(−4).

These last examples show that, unlike most modules we have so far encountered, Verma mod-
ules are highly infinite-dimensional. Indeed, it follows from the PBW Theorem that the regular
module U(g) is a free b-module of infinite rank – equal to the codimension of U(b) in U(g).
Hence dim M(λ), which is the same as the rank of U(g) as a b-module, is also infinite. Nev-
ertheless, it turns out that finite-dimensional modules and Verma module may both be seen as
particular cases of a more general pattern. This leads us to the following definitions.

Definition 4.44. Let M be a g-module. A vector m ∈ M is called singular if it is annihilated
by all positive weight spaces of g – i.e. X · m = 0 for all X ∈ gα, α ∈ ∆+.

Definition 4.45. A g-module M is called a highest weight module if there exists some singular
weight vector m+ ∈ Mλ such that M = U(g) · m+. Any such m+ is called a highest weight
vector, while λ is called the highest weight of M.

Example 4.46. Proposition 4.40 is equivalent to the fact that every finite-dimensional simple g-
module is a highest weight module.

Example 4.47. It should be obvious from the definitions that M(λ) is a highest weight module of
highest weight λ and highest weight vector m+ = 1 ⊗ m+ as in Definition 4.41. Indeed, u ⊗ m+ =
u · m+ for all u ∈ U(g), which already shows M(λ) is generated by m+. In particular,

H · m+ = H ⊗ m+ = 1 ⊗ H · m+ = λ(H)m+

X · m+ = X ⊗ m+ = 1 ⊗ X · m+ = 0

for all H ∈ h and X ∈ gα, α ∈ ∆+.

While Verma modules show that a highest weight module needs not to be finite-dimensional,
it turns out that highest weight modules enjoy many of the features we’ve grown used to in the
past chapters. Explicitly, we may establish the properties described in the following proposition,
whose statement should also explain the nomenclature of Definition 4.45.
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Proposition 4.48. Let M be a highest weight g-module with highest weight vector m ∈ Mλ. The
weight spaces decomposition

M =
⊕

µ∈h∗
Mµ

holds. Furthermore, dim Mµ < ∞ for all µ ∈ h∗ and dim Mλ = 1 – i.e. Mλ = Km. Finally,
given a weight µ of M, λ < µ – so that the highest weight λ of M is unique and coincides with the
largest of the weights of M.

Proof. Since M = U(g) ·m, the PBW Theorem implies that M is spanned by the vectors Fαi1
Fαi2

· · · Fαis
·

m for ∆+ = {α1, . . . , αr} and Fαi ∈ g−αi as in the proof of Proposition 4.18. But

H · (Fαi1
Fαi2

· · · Fαis
· m) = ([H, Fαi1

] + Fαi1
H)Fαi2

· · · Fαis
· m

= −αi1(H)Fαi1
· · · Fαis

· m + Fαi1
([H, Fαi2

] + Fαi2
H)Fαi2

· · · Fαis
· m

...
= (−αi1 − · · · − αis)(H)Fαi1

· · · Fαis
· m + Fαi1

· · · Fαis
H · m

= (λ − αi1 − · · · − αis)(H)Fαi1
· · · Fαis

· m

∴ Fαi1
· · · Fαis

· m ∈ Mλ−αi1
−···−αis

Hence M ⊆ ⊕
µ∈h∗ Mµ, as desired. In fact we have established

M ⊆
⊕

ki∈N

Mλ−k1·α1−···−kr ·αr

where {α1, . . . , αr} = ∆+, so that all weights of M have the form µ = λ − k1 · α1 − · · · − kr · αr.
This already gives us that the weights of M are bounded by λ.

To see that dim Mµ < ∞, simply note that there are only finitely many monomials Fk1
α1 Fk2

α2 · · · Fks
αs

such that µ = λ + k1 · α1 + · · · + ks · αs. Since Mµ is spanned by the images of m under such
monomials, we conclude dim Mµ < ∞. In particular, there is a single monomial Fk1

α1 Fk2
α2 · · · Fks

αs such
that λ = λ + k1 · α1 + · · ·+ ks · αs – which is, of course, the monomial where k1 = · · · = kn = 0.
Hence dim Mλ = 1. �

At this point it is important to note that, far from a “misbehaved” class of examples, Verma
modules hold a very special place in the theory of highest weight modules. Intuitively speaking,
the Verma module M(λ) should really be though-of as “the freest highest weight g-module of
highest weight λ”. In practice, this translates to the following universal property.

Proposition 4.49. Let M be a g-module and m ∈ Mλ be a singular vector. Then there exists a
unique g-homomorphism f : M(λ) −→ M such that f (m+) = m. Furthermore, all homomor-
phisms M(λ) −→ M are given in this fashion.

Homg(M(λ), M) ∼= {m ∈ Mλ : m is singular}

Proof. The result follows directly from Proposition 1.60. Indeed, by the Frobenius Reciprocity
Theorem, a g-homomorphism f : M(λ) −→ M is the same as a b-homomorphism g : Km+ −→
M = Resgb M. More specifically, given a b-homomorphism g : Km+ −→ M, there exists a unique
g-homomorphism f : M(λ) −→ M such that f (u ⊗ m+) = u · g(m+) for all u ∈ U(g), and all
g-homomorphism M(λ) −→ M arise in this fashion.

Any K-linear map g : Km+ −→ M is determined by m = g(m+). Finally, notice that g is a
b-homomorphism if, and only if m is a singular vector lying in Mλ. �
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Why is any of this interesting to us, however? After all, Verma modules are not specially
well suited candidates for a proof of the Highest Weight Theorem. Indeed, we have seen in
Example 4.43 that in general M(λ) is not simple, nor is it ever finite-dimensional. Nevertheless,
we may use M(λ) to establish Theorem 4.39 as follows.

Suppose M is a highest weight g-module of highest weight λ with highest weight vector m.
By the last proposition, there is a g-homomorphism f : M(λ) −→ M such that f (m+) = m. Since
M = U(g) · m, f is surjective and therefore M ∼= M(λ)/ker f . Hence. . .

Proposition 4.50. Let M be a highest weight g-module of highest weight λ. Then M is quotient of
M(λ). If M is simple then M is the quotient of M(λ) by a maximal g-submodule.

Maximal submodules of Verma modules are thus of primary interest to us. As it turns out,
these can be easily classified.

Proposition 4.51. Every submodule N ⊆ M(λ) is the direct sum of its weight spaces. In particu-
lar, M(λ) has a unique maximal submodule N(λ) and a unique simple quotient L(λ) = M(λ)/N(λ).
Any simple highest weight g-module has the form L(λ) for some unique λ ∈ h∗.

Proof. Let N ⊆ M(λ) be a submodule and take any nonzero n ∈ N. Because of Proposition 4.48,
we know there are µ1, . . . , µr ∈ h∗ and nonzero mi ∈ M(λ)µi such that n = m1 + · · · + mr. We
want to show mi ∈ N for all i.

Fix some H2 ∈ h such that µ1(H2) 6= µ2(H2). Then

m1 −
(µ3 − µ1)(H2)

(µ2 − µ1)(H2)
· m3 − · · · − (µr − µ1)(H2)

(µ2 − µ1)(H2)
· mr =

(
1 − H2 − µ1(H2)

(µ2 − µ1)(H2)

)
· n ∈ N

Now take H3 ∈ h such that µ1(H3) 6= µ3(H3). By applying the same procedure again we get

m1 −
(µ4 − µ3)(H3) · (µ4 − µ1)(H2)

(µ3 − µ1)(H3) · (µ2 − µ1)(H2)
· m4 − · · · − (µr − µ3)(H3) · (µr − µ1)(H2)

(µ3 − µ1)(H3) · (µ2 − µ1)(H2)
· mr

=

(
1 − H3 − µ1(H3)

(µ3 − µ1)(H3)

)(
1 − H2 − µ1(H2)

(µ2 − µ1)(H2)

)
· n ∈ N

By applying the same procedure over and over again we can see that m1 = u · n ∈ N for some
u ∈ U(g). Furthermore, if we reproduce all this for m2 + · · · + mr = n − m1 ∈ N we get that
m2 ∈ N. All in all we find m1, . . . , mr ∈ N. Hence

N =
⊕

µ

Nµ =
⊕

µ

M(λ)µ ∩ N

Since M(λ) = U(g) · m+, if N is a proper submodule then m+ /∈ N. Hence any proper
submodule lies in the sum of weight spaces other than M(λ)λ, so the sum N(λ) of all such
submodules is still proper. This implies N(λ) is the unique maximal submodule of M(λ) and
L(λ) = M(λ)/N(λ) is its unique simple quotient. �

Corollary 4.52. Let M be a simple weight g-module of weight λ. Then M ∼= L(λ).

We thus know that L(λ) is the only possible candidate for the g-module M in the statement
of Theorem 4.39. We should also note that our past examples indicate that L(λ) does fulfill its
required role. Indeed. . .

Example 4.53. Consider the sl2(K) module M(2) as described in Example 4.42. We can see from
Example 4.43 that N(2) =

⊕
k>3 K f k · m+, so that L(2) is the 3-dimensional simple sl2(K)-module

– i.e. the finite-dimensional simple module with highest weight 2 constructed in chapter 3.
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All its left to prove the Highest Weight Theorem is verifying that the situation encountered in
Example 4.53 holds for any dominant integral λ ∈ P+. In other words, we need to show. . .

Proposition 4.54. If g is semisimple and λ is dominant integral then the unique simple quotient
L(λ) of M(λ) is finite-dimensional.

The proof of Proposition 4.54 is very technical and we won’t include it here, but the idea behind
it is to show that the set of weights of L(λ) is stable under the natural action of the Weyl group W
on h∗. One can then show that the every weight of L(λ) is conjugate to a single dominant integral
weight of L(λ), and that the set of dominant integral weights of L(λ) is finite. Since W is finitely
generated, this implies the set of weights of the unique simple quotient of M(λ) is finite. But each
weight space is finite-dimensional. Hence so is the simple quotient L(λ).

We refer the reader to [E H73, ch. 21] for further details. We are now ready to prove the
Highest Weight Theorem.

Proof of Theorem 4.39. We begin by the “existence” part of the theorem. Let λ be a dominant
integral weight of g. Since dim L(λ) < ∞, all its left is to show that M = L(λ) is indeed a highest
weight module of highest weight λ. It is clear from the definitions that m+ + N(λ) ∈ L(λ)λ is
singular and generates all of L(λ). Hence it suffices to show that m+ + N(λ) is nonzero. But this
is the same as checking that m+ /∈ N(λ), which is also clear from the previous definitions. As for
the uniqueness of M, it suffices to apply Corollary 4.52. �

We would now like to conclude this chapter by describing the situation where λ /∈ P+. We
begin by pointing out that Proposition 4.54 fails in the general setting. For instance, consider. . .

Example 4.55. The action of sl2(K) on M(−4) is given by the following diagram. In general, it is
possible to check using formula (4.2) that e always maps f k+1 ·m+ to a nonzero multiple of f k ·m+,
so we can see that M(−4) has no proper submodules, N(−4) = 0 and thus L(−4) ∼= M(−4).

· · · M(−4)−10 M(−4)−8 M(−4)−6 M(−4)−4

−28
−18

1

−10

1

−4

1 1

,

While L(λ) is always a highest weight module of highest weight λ, we can easily see that if
λ /∈ P+ then L(λ) is infinite-dimensional. Indeed, this is precisely the counterpositive of Propo-
sition 4.38! If λ = k1β1 + · · ·+ krβr ∈ P is integral and ki < 0 for all i, then one is additionally
able to show that M(λ) ∼= L(λ) as in Example 4.55. Verma modules can thus serve as examples
of infinite-dimensional simple modules.

In the next chapter we expand our previous results by exploring the question: what are all the
infinite-dimensional simple g-modules?
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Chapter 5

Simple Weight Modules

In this chapter we will expand our results on finite-dimensional simple modules of semisimple Lie
algebras by considering infinite-dimensional g-modules, which introduces numerous complications
to our analysis.

For instance, in the infinite-dimensional setting we can no longer take complete-reducibility
for granted. Indeed, we have seen that even if g is a semisimple Lie algebra, there are infinite-
dimensional g-modules which are not semisimple. For a counterexample look no further than
Example 2.29: the regular g-module U(g) is never semisimple. Nevertheless, for simplicity – or
shall we say semisimplicity – we will focus exclusively on semisimple g-modules. Our strategy is,
once again, that of classifying simple modules. The regular g-module hides further unpleasant
surprises, however: recall from Example 4.13 that⊕

λ

U(g)λ = 0 ( U(g)

and the weight space decomposition fails for U(g).
Indeed, our proof of the weight space decomposition in the finite-dimensional case relied heav-

ily in the simultaneous diagonalization of commuting operators in a finite-dimensional space.
Even if we restrict ourselves to simple modules, there is still a diverse spectrum of counterexam-
ples to Corollary 4.12 in the infinite-dimensional setting. For instance, any g-module M whose
restriction to h is a free module satisfies Mλ = 0 for all λ as in Example 4.13. These are called
h-free g-modules, and rank 1 simple h-free sp2n(K)-modules where first classified by Nilsson in
[Nil16]. Dimitar’s construction of the so called exponential tensor sln(K)-modules in [GN20] is also
an interesting source of counterexamples.

Since the weight space decomposition was perhaps the single most instrumental ingredient of
our previous analysis, it is only natural to restrict ourselves to the case it holds. This brings us to
the following definition.

Definition 5.1. A g-module M is called a weight g-module if M =
⊕

λ∈h∗ Mλ and dim Mλ <
∞ for all λ ∈ h∗. The support of M is the set supp M = {λ ∈ h∗ : Mλ 6= 0}.

Example 5.2. Corollary 4.12 is equivalent to the fact that every finite-dimensional module of a
semisimple Lie algebra is a weight module. More generally, every finite-dimensional simple mod-
ule of a reductive Lie algebra is a weight module.

Example 5.3. We have seen that every finite-dimensional g-module is a weight module for semisim-
ple g. In particular, if g is finite-dimensional then the adjoint g-module g is a weight module. More
generally, a finite-dimensional Lie algebra g is reductive if, and only if the adjoint g-module g is a
weight module, in which case its weight spaces are given by the root spaces of g

53
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Example 5.4. Proposition 4.48 is equivalent to the fact that any highest weight g-module M of
highest weight λ is a weight module whose support is contained in λ +N∆− = {λ − knα1 − · · · −
knαn : αi ∈ ∆+, ki ∈ Z, ki > 0}. In particular, Verma modules are weight modules.

Example 5.5. Proposition 4.51 implies that the unique maximal submodule N(λ) of M(λ) is a
weight module. In fact, the proof of Proposition 4.51 can be generalized to show that every
submodule N ⊆ M of a weight module M is a weight module, and Nλ = Mλ ∩ N for all λ ∈ h∗.

Example 5.6. Given a weight module M, a submodule N ⊆ M and λ ∈ h∗, it is clear that Mλ/N ⊆
(M/N)λ. In addition, M/N =

⊕
λ∈h∗ Mλ/N. Hence M/N is weight g-module with (M/N)λ = Mλ/N ∼=

Mλ/Nλ.

Example 5.7. Let g1 and g2 be Lie algebras, M1 be a weight g1-module and M2 a weight g2-
module. Recall from Example 4.6 that if hi ⊆ gi are Cartan subalgebras then h = h1 ⊕ h2 is a
Cartan subalgebra of g = g1 ⊕ g2 with h∗ = h∗1 ⊕ h∗2 . In this setting, one can readily check that
M1 ⊗ M2 is a weight g-module with

(M1 ⊗ M2)λ1+λ2 = (M1)λ1 ⊗ (M2)λ2

for all λi ∈ h∗i and supp(M1 ⊗ M2) = supp M1 ⊕ supp M2 = {λ1 + λ2 : λi ∈ supp Mi ⊆ h∗i }.

Example 5.8. Let g = z⊕ s1 ⊕ · · · ⊕ sr be a reductive Lie algebra, where z is the center of g and
s1, . . . , sr are its simple components. As in Example 2.4, any simple weight g-module M can be
decomposed as

M ∼= Z ⊗ M1 ⊗ · · · ⊗ Mr

where Z is a 1-dimensional representation of z and Mi is a simple weight si-module. The modules
Z and Mi are uniquely determined up to isomorphism.

Example 5.9. We would like to show that the requirement of finite-dimensionality in Definition 5.1
is not redundant. Let g be a finite-dimensional reductive Lie algebra and consider the adjoint g-
module U(g) – where X ∈ g acts by taking commutators. Given α ∈ Q, a simple computation
shows K〈X1 · · · Xn H1 · · · Hm : Xi ∈ gαi , Hi ∈ h, αi ∈ ∆, α = α1 + · · ·+ αn〉 ⊆ U(g)α. The PBW Theo-
rem and Example 5.3 thus imply that U(g) =

⊕
α∈Q U(g)α where U(g)α = K〈X1 · · · Xn H1 · · · Hm :

Xi ∈ gαi , Hi ∈ h, αi ∈ ∆, α = α1 + · · · + αn〉. However, dimU(g)α = ∞. For instance, U(g)0 is
precisely the commutator of h in U(g), which contains U(h) and is therefore infinite-dimensional.

Remark. We should stress that the weight spaces Mλ ⊆ M of a given weight g-module M are not
g-submodules. Nevertheless, Mλ is a h-submodule. More generally, Mλ is a U(g)0-submodule,
where U(g)0 is the centralizer of h in U(g) – which coincides with the weight space of 0 ∈ h∗ in
the adjoint g-module U(g), as seen in Example 5.9.

A particularly well behaved class of examples are the so called bounded modules.

Definition 5.10. A weight g-module M is called bounded if dim Mλ is bounded. The lowest
upper bound deg M for dim Mλ is called the degree of M. The essential support of M is the
set suppess M = {λ ∈ h∗ : dim Mλ = deg M}.

Example 5.11. Let g1 and g2 be Lie algebras with Cartan subalgebras hi ⊆ gi and take g = g1 ⊕ g2.
Given bounded gi-modules Mi, it follows from Example 5.7 that M1 ⊗ M2 is a bounded g-module
with deg M1 ⊗ M2 = deg M1 · deg M2 and

suppess(M1 ⊗ M2) = suppess M1 ⊕ suppess M2 = {λ1 + λ2 : λi ∈ suppess Mi ⊆ h∗i }

Example 5.12. There is a natural action of sl2(K) on the space K[x, x−1] of Laurent polynomials,
given by the formulas in (5.1). One can quickly verify K[x, x−1]2k = Kxk and K[x, x−1]λ = 0 for
any λ /∈ 2Z, so that K[x, x−1] =

⊕
k∈Z Kxk is a degree 1 bounded weight sl2(K)-module. It follows
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from the remark at the end of Example 5.5 that any nonzero submodule N ⊆ K[x, x−1] must
contain a monomial xk. But since the operators − d

dx + x−1

2 , x2 d
dx + x

2 : K[x, x−1] −→ K[x, x−1] are
both injective, this implies all other monomials can be found in N by successively applying f and
e. Hence N = K[x, x−1] and K[x, x−1] is a simple module.

e · p =

(
x2 d

dx
+

x
2

)
p f · p =

(
− d

dx
+

x−1

2

)
p h · p = 2x

d
dx

p (5.1)

Notice that the support of K[x, x−1] is the trivial 2Z-coset 0 + 2Z. This is representative of
the general behavior in the following sense: if M is a simple weight g-module, since M[λ] =⊕

α∈Q Mλ+α is stable under the action of g for all λ ∈ h∗,
⊕

α∈Q Mλ+α is either 0 or all of M. In
other words, the support of a simple weight module is always contained in a single Q-coset.

However, the behavior of K[x, x−1] deviates from that of an arbitrary bounded g-module in the
sense its essential support is precisely the entire Q-coset it inhabits – i.e. suppess K[x, x−1] = 2Z.
This isn’t always the case. Nevertheless, in general we find. . .

Proposition 5.13. Let g be a finite-dimensional semisimple Lie algebra and M be a simple infinite-
dimensional bounded g-module. The essential support suppess M is Zariski-dense1 in h∗.

This proof was deemed too technical to be included in here, but see Proposition 3.5 of [Mat00]
for the case where g = s is a simple Lie algebra. The general case then follows from Example 5.8,
Example 5.11 and the asserting that the product of Zariski-dense subsets in Kn and Km is Zariski-
dense in Kn+m = Kn × Km.

We now begin a systematic investigation of the problem of classifying the infinite-dimensional
simple weight modules of a given Lie algebra g. As in the previous chapter, let g be a finite-
dimensional semisimple Lie algebra. As a first approximation of a solution to our problem, we
consider the Verma modules M(λ) for λ ∈ h∗ which is not dominant integral. After all, the simple
quotients of Verma modules form a remarkably large class of infinite-dimensional simple weight
modules – at least as large as h∗ r P+! More generally, the induction functor Indg

b : b-Mod −→
g-Mod has proven itself a powerful tool for constructing modules.

We claim this is not an unmotivated guess. Specifically, there are very good reasons behind
the choice to consider induction over the Borel subalgebra b ⊆ g. First, the fact that h ⊆ g
affords us great control over the weight spaces of Indg

b M: by assigning a prescribed action of
h to M we can ensure that Indg

b M =
⊕

λ(Indg
b M)λ. In addition, we have seen in the proof of

Proposition 4.48 that by requiring that the positive part of b acts on M by zero we can ensure that
dim(Indg

b M)λ < ∞. All in all, the nature of b affords us just enough control to guarantee that
Indg

b M is a weight module for sufficiently well behaved M.
Unfortunately for us, this is still too little control: there are simple weight modules which are

not of the form L(λ). More generally, we may consider induction over some parabolic subalgebra
p ⊆ g – i.e. some subalgebra such that p ⊇ b. This leads us to the following definition.

Definition 5.14. Let p ⊆ g be a parabolic subalgebra and M be a simple p/nil(p)-module. We
can view M as a p-module where nil(p) acts by zero by setting X · m = (X + nil(p)) · m for
all m ∈ M and X ∈ p – which is the same as the p-module given by composing the action
map p/nil(p) −→ gl(M) with the projection p −→ p/nil(p). The module Mp(M) = Indg

p M is
called generalized Verma module associated with M.

Example 5.15. It is not hard to see that b/nil(b) = h. If we take λ ∈ h∗ and let Km+ be the
1-dimensional h-module where h acts by λ then M(λ) = Mb(Km+).

1Any choice of basis for h∗ induces a K-linear isomorphism h∗
∼−−→ Kn. In particular, a choice of basis induces a unique

topology in h∗ such that the map h∗ −→ Kn is a homeomorphism onto Kn with the Zariski topology. Any two basis induce
the same topology in h∗, which we call the Zariski topology of h∗.
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As promised, Mp(M) is generally well behaved for well behaved M. In particular, if M is
highest weight p/nil(p)-module then Mp(M) is also a highest weight g-module, and if M is a weight
p/nil(p)-module then Mp(M) is a weight module with Mp(M)λ = ∑α+µ=λ U(g)α ⊗U(p) Mµ, – see
Lemma 1.1 of [Mat00] for a full proof. However, Mp(M) is not simple in general. Indeed, regular
Verma modules not necessarily simple. This issue may be dealt with by passing to the simple
quotients of Mp(M).

Let M be a simple weight p/nil(p)-module. As it turns out, the situation encountered in
Proposition 4.51 is also verified in the general setting. Namely, since Mp(M) is generated by
K ⊗U(p) M =

⊕
λ∈Q+supp M Mp(M)λ, it follows that any proper submodule of Mp(M) is con-

tained in
⊕

λ/∈Q+supp M Mp(M)λ. The sum Np(M) of all such submodules is thus the unique
maximal submodule of Mp(M) and Lp(M) = Mp(M)/Np(M) is its unique simple quotient – again,
we refer the reader to [Mat00] for a complete proof. This leads us to the following definition.

Definition 5.16. A simple weight g-module is called parabolic induced if it is isomorphic to
Lp(M) for some proper parabolic subalgebra p ( g and some simple weight p/nil(p)-module
M. A cuspidal g-module is a simple weight g-module which is not parabolic induced.

The first breakthrough regarding our classification problem was given by Fernando in his now
infamous paper “Lie algebra modules with finite-dimensional weight spaces. I” [Fer90], where he
proved that every simple weight g-module is parabolic induced by a cuspidal module.

Theorem 5.17 (Fernando). Any simple weight g-module is isomorphic to Lp(M) for some
parabolic subalgebra p ⊆ g and some cuspidal p/nil(p)-module M.

We should point out that the relationship between simple weight g-modules and pairs (p, M)
is not one-to-one. Nevertheless, this relationship is well understood. Namely, Fernando himself
established. . .

Proposition 5.18 (Fernando). Given a parabolic subalgebra p ⊆ g, there exists a basis Σ for ∆
such that Σ ⊆ ∆p ⊆ ∆, where ∆p denotes the set of roots of p. Furthermore, if p′ ⊆ g is another
parabolic subalgebra, M is a cuspidal p/nil(p)-module and N is a cuspidal p′/nil(p′)-module then
Lp(M) ∼= Lp′(N) if, and only if p′ = σp and M ∼= σN as p-modules for some2 σ ∈ WM, where

WM = 〈σβ : β ∈ Σ, Hβ +nil(p) is central in p/nil(p) and Hβ acts on M as a positive integer〉 ⊆ W

Remark. The definition of the subgroup WM ⊆ W is independent of the choice of basis Σ.

As a first consequence of Fernando’s Theorem, we provide two alternative characterizations of
cuspidal modules.

Corollary 5.19 (Fernando). Let M be a simple weight g-module. The following conditions are
equivalent.

(i) M is cuspidal.

(ii) Fα acts injectively on M for all α ∈ ∆.

(iii) The support of M is precisely one Q-coset.

Example 5.20. As noted in Example 5.12, the element f ∈ sl2(K) acts injectively on the space of
Laurent polynomials. Hence K[x, x−1] is a cuspidal sl2(K)-module.

2Here σp denotes the image of p under the automorphism of σ : g −→ g given by the canonical action of W on g and σN
is the p-module given by composing the map p′ −→ gl(N) with the restriction σ�p: p −→ p′.
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Having reduced our classification problem to that of classifying cuspidal modules, we are now
faced the daunting task of actually classifying them. Historically, this was first achieved by Olivier
Mathieu in the early 2000’s in his paper “Classification of irreducible weight modules” [Mat00].
To do so, Mathieu introduced new tools which have since proved themselves remarkably useful
throughout the field, known as. . .

5.1 Coherent Families

We begin our analysis with a simple question: how to do we go about constructing cuspidal
modules? Specifically, given a cuspidal g-module, how can we use it to produce new cuspidal
modules? To answer this question, we look back at the single example of a cuspidal module we
have encountered so far: the sl2(K)-module K[x, x−1] of Laurent polynomials – i.e. Example 5.12.

Our first observation is that sl2(K) acts on K[x, x−1] via differential operators. In other words,
the action map U(sl2(K)) −→ End(K[x, x−1]) factors through the inclusion of the algebra Diff(K[x, x−1]) =

K
[

x, x−1, d
dx

]
of differential operators in K[x, x−1].

U(sl2(K)) Diff(K[x, x−1]) End(K[x, x−1])

The space K[x, x−1] can be regarded as a Diff(K[x, x−1])-module in the natural way, and we can
produce new Diff(K[x, x−1])-modules by twisting K[x, x−1] by automorphisms of Diff(K[x, x−1]).
For example, given λ ∈ K we may take the automorphism

ϕλ : Diff(K[x, x−1]) −→ Diff(K[x, x−1])

x 7−→ x

x−1 7−→ x−1

d
dx

7−→ d
dx

+
λ

2
x−1

and consider the twisted module ϕλK[x, x−1] = K[x, x−1], where some operator P ∈ Diff(K[x, x−1])
acts as ϕλ(P).

By composing the action map Diff(K[x, x−1]) −→ End(ϕλK[x, x−1]) with the homomorphism of
algebras U(sl2(K)) −→ Diff(K[x, x−1]) we can give ϕλK[x, x−1] the structure of an sl2(K)-module.
Diagrammatically, we have

U(sl2(K)) Diff(K[x, x−1]) Diff(K[x, x−1]) End(K[x, x−1])
ϕλ ,

where the maps U(sl2(K)) −→ Diff(K[x, x−1]) and Diff(K[x, x1]) −→ End(K[x, x−1]) are the ones
from the previous diagram.

Explicitly, we find that the action of sl2(K) on ϕλK[x, x−1] is given by

p e7−→
(

x2 d
dx

+
1 + λ

2
x
)

p p
f7−→

(
− d

dx
+

1 − λ

2
x−1

)
p p h7−→

(
2x

d
dx

+ λ

)
p,

so we can see ϕλK[x, x−1]2k+ λ
2
= Kxk for all k ∈ Z and ϕλK[x, x−1]µ = 0 for all other µ ∈ h∗.

Hence ϕλK[x, x−1] is a degree 1 bounded sl2(K)-module with supp ϕλK[x, x−1] = λ
2 + 2Z. One

can also quickly check that if λ /∈ 1 + 2Z then e and f act injectively in ϕλK[x, x−1], so that
ϕλK[x, x−1] is simple. In particular, if λ, µ /∈ 1 + 2Z with λ /∈ µ + 2Z then ϕλK[x, x−1] and
ϕµK[x, x−1] are non-isomorphic cuspidal sl2(K)-modules, since their supports differ. These cus-
pidal modules can be “glued together” in a monstrous concoction by summing over λ ∈ K, as
in

M =
⊕

λ+2Z∈K/2Z

ϕλK[x, x−1],
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To a distracted spectator, M may look like just another, innocent, sl2(K)-module. However,
the attentive reader may have already noticed some of the its bizarre features, most noticeable
of which is the fact that M is very big. In fact, M is as big a degree 1 bounded module gets:
suppM = suppess M is the entirety of h∗. This may look very alien the reader familiarized with
the finite-dimensional setting, where the configuration of weights is very rigid. For this reason,
M deserves to be called “a monstrous concoction”.

On a perhaps less derogatory note, M also deserves to be called a family. This is because M

consists of lots of smaller cuspidal modules which fit together inside of it in a coherent fashion.
Mathieu’s ingenious breakthrough was the realization that M is a particular example of a more
general pattern, which he named coherent families.

Definition 5.21. A coherent family M of degree d is a weight g-module M such that

(i) dimMλ = d for all λ ∈ h∗ – i.e. suppess M = h∗.

(ii) For any u ∈ U(g) in the centralizer U(g)0 of h in U(g), the map

h∗ −→ K
λ 7−→ Tr(u�Mλ

)

is polynomial in λ.

Example 5.22. The module M =
⊕

λ+2Z∈K/2Z
ϕλK[x, x−1] is a degree 1 coherent sl2(K)-family.

Example 5.23. Given λ ∈ K, M(λ) =
⊕

µ∈K Kxµ with

p e7−→
(

x2 d
dx

+ λx
)

p p
f7−→

(
− d

dx
+ λx−1

)
p p h7−→ 2x

d
dx

p,

is a degree 1 coherent sl2(K)-family – where x±1, d/dx : M(λ) −→ M(λ) are given by x±1xµ =
xµ±1 and d/dxxµ = µxµ−1. It is easy to check M from Example 5.22 is isomorphic to M(1/2) and
(M(1/2))[0] ∼= K[x, x−1].

Remark. We would like to stress that coherent families have proven themselves useful for problems
other than the classification of cuspidal g-modules. For instance, Nilsson’s classification of rank
1 h-free sp2n(K)-modules is based on the notion of coherent families and the so called weighting
functor.

Our hope is that given a cuspidal module M, we can somehow fit M inside of a coherent g-
family, such as in the case of K[x, x−1] and M from Example 5.22. In addition, we hope that such
coherent families are somehow uniquely determined by M. This leads us to the following definition.

Definition 5.24. Given a bounded g-module M of degree d, a coherent extension M of M is
a coherent family M of degree d that contains M as a subquotient.

Our goal is now showing that every simple bounded module has a coherent extension. The
idea then is to classify coherent families, and classify which submodules of a given coherent family
are actually cuspidal modules. If every simple bounded g-module fits inside a coherent extension,
this would lead to classification of all cuspidal g-modules, which we now know is the key for the
solution of our classification problem. However, there are some complications to this scheme.

Leaving aside the question of existence for a second, we should point out that coherent families
turn out to be rather complicated on their own. In fact they are too complicated to classify in
general. Ideally, we would like to find nice coherent extensions – ones we can actually classify. For
instance, we may search for irreducible coherent extensions, which are defined as follows.
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Definition 5.25. A coherent family M is called irreducible if it contains no proper coherent
subfamilies – i.e. M is a simple object in the full subcategory of g-Mod consisting of
coherent families. Equivalently, we call M irreducible if Mλ is a simple U(g)0-module for
some λ ∈ h∗.

Another natural candidate for the role of “nice extensions” are the semisimple coherent fami-
lies – i.e. families which are semisimple as g-modules. These turn out to be very easy to produce.
Namely, there is a construction, known as the semisimplification of a coherent family, which takes a
coherent extension of M to a semisimple coherent extension of M.

Lemma 5.26. Given a coherent family M and λ ∈ h∗, M[λ] has finite length as a g-module.

Proposition 5.27. Let M be a coherent family of degree d. There exists a unique semisimple
coherent family Mss of degree d such that the composition series of Mss[λ] is the same as that of
M[λ] for all λ ∈ h∗, called the semisimplification of M.
Namely, if λ ∈ h∗ and 0 = Mλ0 ⊆ Mλ1 ⊆ · · · ⊆ Mλrλ

= M[λ] is a composition series3,

Mss ∼=
⊕

λ+Q∈h∗/Q
i

Mλi+1/Mλi

Proof. The uniqueness of Mss should be clear: since Mss is semisimple, so is Mss[λ]. Hence by
the Jordan-Hölder Theorem

Mss[λ] ∼=
⊕

i

Mλi+1/Mλi

As for the existence of the semisimplification, it suffices to show

Mss =
⊕

λ+Q∈h∗/Q
i

Mλi+1/Mλi

is indeed a semisimple coherent family of degree d.
We know from Examples 5.5 and 5.6 that each quotient Mλi+1/Mλi is a weight module. Hence

Mss is a weight module. Furthermore, given µ ∈ h∗

Mss
µ =

⊕
λ+Q∈h∗/Q

i

(
Mλi+1/Mλi

)
µ
=

⊕
i

(
Mµi+1/Mµi

)
µ
∼=

⊕
i

(Mµi+1)µ/(Mµi)µ

In particular,

dimMss
µ = ∑

i
dim(Mµi+1)µ − dim(Mµi)µ = dimM[µ]µ = dimMµ = d

Likewise, given u ∈ U(g)0 the value

Tr(u�Mss
µ
) = ∑

i
Tr(u�(Mµi+1)µ

)− Tr(u�(Mµi)µ
) = Tr(u�M[µ]µ) = Tr(u�Mµ)

is polynomial in µ ∈ h∗. �

3Notice that M[λ] = M[µ] for any µ ∈ λ + Q. Hence the sum
⊕

λ+Q∈h∗/Q
⊕

i Mλi+1/Mλi is independent of the choice of
representative for λ + Q – provided we choose Mµi = Mλi for all µ ∈ λ + Q and i.
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Remark. Although we have provided an explicit construction of Mss in terms of M, we should
point out this construction is not functorial. First, given a g-homomorphism f : M −→ N between
coherent families, it is unclear what f ss : Mss −→ Nss is supposed to be. Secondly, and this is
more relevant, our construction depends on the choice of composition series 0 = Mλ0 ⊆ · · · ⊆
Mλrλ

= M[λ]. While different choices of composition series yield isomorphic results, there is no
canonical isomorphism. In addition, there is no canonical choice of composition series.

The proof of Lemma 5.26 is extremely technical and will not be included in here. It suffices to
note that, as in Proposition 5.13, the general case follows from the case where g is simple, which
may be found in [Mat00] – see Lemma 3.3. As promised, if M is a coherent extension of M then
so is Mss.

Proposition 5.28. Let M be a simple bounded g-module and M be a coherent extension of M. Then
Mss is a coherent extension of M, and M is in fact a submodule of Mss.

Proof. Since M is simple, its support is contained in a single Q-coset. This implies that M is a
subquotient of M[λ] for any λ ∈ supp M. If we fix some composition series 0 = M0 ⊆ M1 ⊆
· · · ⊆ Mr = M[λ] of M[λ] with M ∼= Mi+1/Mi, there is a natural inclusion

M ∼−−→ Mi+1/Mi −→
⊕

j

Mj+1/Mj
∼= Mss[λ]

�

Given the uniqueness of the semisimplification, the semisimplification of any semisimple co-
herent extension M is M itself and therefore. . .

Corollary 5.29. Let M be a simple bounded g-module and M be a semisimple coherent extension
of M. Then M is contained in M.

These last results provide a partial answer to the question of existence of well behaved coherent
extensions. As for the uniqueness M in Corollary 5.29, it suffices to show that the multiplicities
of the simple weight g-modules in M are uniquely determined by M. These multiplicities may be
computed via the following lemma.

Lemma 5.30. Let M be a semisimple weight g-module. Then Mλ is a semisimple U(g)0-module
for any λ ∈ supp M. Moreover, if L is a simple weight g-module such that λ ∈ supp L then Lλ is
a simple U(g)0-module and the multiplicity L in M coincides with the multiplicity of Lλ in Mλ as
a U(g)0-module.

Proof. We begin by showing that Lλ is simple. Let N ⊆ Lλ be a nontrivial U(g)0-submodule. We
want to establish that N = Lλ.

If U(g)α denotes the root space of α in U(g) under the adjoint action of g as in Example 5.9,
α ∈ Q, a simple calculation shows U(g)α · N ⊆ Lλ+α. Since L is simple and N is nonzero, it
follows from Example 5.9 that

L = U(g) · N =
⊕
α∈Q

U(g)α · N

and thus Lλ+α = U(g)α · N. In particular, Lλ = U(g)0 · N ⊆ N and N = Lλ.
Now given a semisimple weight g-module M =

⊕
i Mi with Mi simple, it is clear Mλ =⊕

i(Mi)λ. Each (Mi)λ is either 0 or a simple U(g)0-module, so that Mλ is a semisimple U(g)0-
module. In addition, to see that the multiplicity of L in M coincides with the multiplicity of Lλ in
Mλ it suffices to show that if (Mi)λ

∼= (Mj)λ are both nonzero then Mi
∼= Mj.



§5.1. Coherent Families 61

If I(Mi) = U(g) ⊗U(g)0
(Mi)λ, the inclusion of U(g)0-modules (Mi)λ −→ Mi induces a g-

homomorphism

I(Mi) −→ Mi

u ⊗ m 7−→ u · m

Since Mi is simple and λ ∈ supp Mi, Mi = U(g) · (Mi)λ. The homomorphism I(Mi) −→ Mi
is thus surjective. Similarly, if I(Mj) = U(g) ⊗U(g)0

(Mj)λ then there is a natural surjective g-
homomorphism I(Mj) −→ Mj. Now suppose there is an isomorphism of U(g)0-modules f :
(Mi)λ

∼−−→ (Mj)λ. Such an isomorphism induces an isomorphism of g-modules

f̃ : I(Mi)
∼−−→ I(Mj)

u ⊗ m 7−→ u ⊗ f (m)

By composing f̃ with the projection I(Mj) −→ Mj we get a surjective homomorphism I(Mi) −→
Mj. We claim ker(I(Mi) −→ Mi) = ker(I(Mi) −→ Mj). To see this, notice that ker(I(Mi) −→ Mi)
coincides with the largest submodule Z(Mi) ⊆ I(Mi) contained in

⊕
α 6=0 U(g)α ⊗U(g)0

(Mi)λ. In-
deed, a simple computation shows ker(I(Mi) −→ Mi) ∩ (U(g)0 ⊗U(g)0

(Mi)λ) = 0, which im-
plies ker(I(Mi) −→ Mi) ⊆ Z(Mi). Since Mi is simple, ker(I(Mi) −→ Mi) is maximal and
thus ker(I(Mi) −→ Mi) = Z(Mi). By the same token, ker(I(Mj) −→ Mj) is the largest sub-
module of I(Mj) contained in

⊕
α 6=0 U(g)α ⊗U(g)0

(Mj)λ and therefore ker(I(Mi) −→ Mi) =

f̃−1(ker(I(Mj) −→ Mj)) = ker(I(Mi) −→ Mj).
Hence there is an isomorphism I(Mi)/ker(I(Mi) −→ Mi)

∼−−→ Mj satisfying

I(Mi) I(Mj)

I(Mi)/ker(I(Mi) −→ Mi) Mj

f̃

∼

and finally Mi
∼= I(Mi)/ker(I(Mi) −→ Mi)

∼= Mj. �

A complementary question now is: which submodules of a nice coherent family are cuspidal?

Proposition 5.31 (Mathieu). Let M be an irreducible coherent family of degree d and λ ∈ h∗. The
following conditions are equivalent.

(i) M[λ] is simple.

(ii) Fα �M[λ] is injective for all α ∈ ∆.

(iii) M[λ] is cuspidal.

Proof. The fact that (i) and (iii) are equivalent follows directly from Corollary 5.19. Likewise, it is
clear from the corollary that (iii) implies (ii). All it is left is to show (ii) implies (iii). This isn’t
already clear from Corollary 5.19 because, at first glance, M[λ] may not be simple for some λ
satisfying (ii). We will show this is never the case.

Suppose Fα acts injectively on the submodule M[λ], for all α ∈ ∆. Since M[λ] has finite length,
M[λ] contains an infinite-dimensional simple g-submodule M. Moreover, again by Corollary 5.19
we conclude M is a cuspidal module, and its degree is bounded by d. We want to show M[λ] = M.

We claim the set U = {µ ∈ h∗ : Mµ is a simple U(g)0-module} is Zariski-open. If we suppose
this is the case for a moment or two, it follows from the fact that M is simple and suppess M is
Zariski-dense that U ∩ suppess M is non-empty. In other words, there is some µ ∈ h∗ such that Mµ

is a simple U(g)0-module and dim Mµ = deg M.
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In particular, Mµ 6= 0, so Mµ = Mµ. Now given any simple g-module L, it follows from
Lemma 5.30 that the multiplicity of L in M[λ] is the same as the multiplicity Lµ in Mµ as a
U(g)0-module – which is, of course, 1 if L ∼= M and 0 otherwise. Hence M[λ] = M and M[λ] is
cuspidal. �

To finish the proof, we now show. . .

Lemma 5.32. Let M be a coherent family. The set U = {λ ∈ h∗ : Mλ is a simple U(g)0-module}
is Zariski-open.

Proof. For each λ ∈ h∗ we introduce the bilinear form

Bλ : U(g)0 ×U(g)0 −→ K
(u, v) 7−→ Tr(uv�Mλ

)

and consider its rank – i.e. the dimension of the image of the induced operator

U(g)0 −→ U(g)∗0
u 7−→ Bλ(u, ·)

Our first observation is that rank Bλ 6 d2. This follows from the commutativity of

U(g)0 U(g)∗0

End(Mλ) End(Mλ)
∗∼

,

where the map U(g)0 −→ End(Mλ) is given by the action of U(g)0, the map End(Mλ)
∗ −→ U(g)∗0

is its dual, and the isomorphism End(Mλ)
∼−−→ End(Mλ)

∗ is induced by the trace form

End(Mλ)× End(Mλ) −→ K
(T, S) 7−→ Tr(TS)

Indeed, rank Bλ 6 rank(U(g)0 −→ End(Mλ)) 6 dim End(Mλ) = d2. Furthermore, if rank Bλ =
d2 then we must have rank(U(g)0 −→ End(Mλ)) = d2 – i.e. the map U(g)0 −→ End(Mλ) is sur-
jective. In particular, if rank Bλ = d2 then Mλ is a simple U(g)0-module, for if M ⊆ Mλ is invariant
under the action of U(g)0 then M is invariant under any K-linear operator Mλ −→ Mλ, so that
M = 0 or M = Mλ.

On the other hand, if Mλ is simple then by Burnside’s Theorem on matrix algebras the map
U(g)0 −→ End(Mλ) is surjective. Hence the commutativity of the previously drawn diagram,
as well as the fact that rank(U(g)0 −→ End(Mλ)) = rank(End(Mλ)

∗ −→ U(g)∗0), imply that
rank Bλ = d2. This goes to show that U is precisely the set of all λ such that Bλ has maximal rank
d2. We now show that U is Zariski-open. First, notice that

U =
⋃

V⊆U(g)0
dim V=d

UV ,

where UV = {λ ∈ h∗ : rank Bλ �V= d2}. Here V ranges over all d-dimensional subspaces of U(g)0
– V is not necessarily a U(g)0-submodule.

Indeed, if rank Bλ = d2 it follows from the subjectivity of the map U(g)0 −→ End(Mλ) that
there is some V ⊆ U(g)0 with dim V = d such that the restriction V −→ End(Mλ) is surjective.
The commutativity of
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V V∗

End(Mλ) End(Mλ)
∗∼

then implies rank Bλ �V= d2. In other words, U ⊆ ⋃
V UV .

Likewise, if rank Bλ �V= d2 for some V, then the commutativity of

V V∗

U(g)0 U(g)∗0

implies rank Bλ > d2, which goes to show
⋃

V UV ⊆ U.
Given λ ∈ UV , the surjectivity of V −→ End(Mλ) and the fact that dim V < ∞ imply V −→ V∗

is invertible. Since M is a coherent family, Bλ depends polynomially in λ. Hence so does the
induced maps V −→ V∗. In particular, there is some Zariski neighborhood U′ of λ such that the
map V −→ V∗ induced by Bµ �V is invertible for all µ ∈ U′.

But the surjectivity of the map induced by Bµ �V implies rank Bµ = d2, so µ ∈ UV and therefore
U′ ⊆ UV . This implies UV is open for all V. Finally, U is the union of Zariski-open subsets and is
therefore open. We are done. �

The major remaining question for us to tackle is that of the existence of coherent extensions,
which will be the focus of our next section.

5.2 Localizations & the Existence of Coherent Extensions

Let M be a simple bounded g-module of degree d. Our goal is to prove that M has a (unique)
irreducible semisimple coherent extension M. Since M is simple, we know M ⊆ M[λ] for any
λ ∈ supp M. Our first task is constructing M[λ]. The issue here is that suppess M may not be all
of λ + Q = suppess M[λ], so we may find M ( M[λ]. In fact, we may find supp M ( λ + Q.

This wasn’t an issue an Example 5.12 because we verified that the action of f ∈ sl2(K) on
K[x, x−1] is injective. Since all weight spaces of K[x, x−1] are 1-dimensional, this implies the action
of f is actually bijective, so we can obtain a nonzero vector in K[x, x−1]2k = Kxk for any k ∈ Z

by translating between weight spaced using f and f−1 – here f−1 denotes the K-linear operator
(−d/dx + x−1/2)−1, which is the inverse of the action of f on K[x, x−1].

· · · Kx−2 Kx−1 K Kx Kx2 · · ·

f−1 f−1

f

f−1

f

f−1

f

f−1

f

f−1

f f

In the general case, the action of some Fα ∈ g with α ∈ ∆ in M may not be injective. In fact, we
have seen that the action of Fα is injective for all α ∈ ∆+ if, and only if M is cuspidal. Nevertheless,
we could intuitively make it injective by formally inverting the elements Fα ∈ U(g). This would
allow us to obtain nonzero vectors in Mµ for all µ ∈ λ + Q by successively applying elements
of {F±1

α }α∈∆ to a nonzero weight vector m ∈ Mλ. Moreover, if the actions of the Fα were to be
invertible, we would find that all Mµ are d-dimensional for µ ∈ λ + Q.

In a commutative domain, this can be achieved by tensoring our module by the field of frac-
tions. However, U(g) is hardly ever commutative – U(g) is commutative if, and only if g is Abelian
– and the situation is more delicate in the non-commutative case. For starters, a non-commutative
K-algebra A may not even have a “field of fractions” – i.e. an over-ring where all elements of A
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have inverses. Nevertheless, it is possible to formally invert elements of certain subsets of A via a
process known as localization, which we now describe.

Definition 5.33. Let A be a K-algebra. A subset S ⊆ A is called multiplicative if s · t ∈ S for
all s, t ∈ S and 0 /∈ S. A multiplicative subset S is said to satisfy Ore’s localization condition
if for each a ∈ A and s ∈ S there exists b, c ∈ A and t, t′ ∈ S such that sa = bt and as = t′c.

Theorem 5.34 (Ore-Asano). Let S ⊆ A be a multiplicative subset satisfying Ore’s localization
condition. Then there exists a (unique) K-algebra S−1 A, with a canonical algebra homomorphism
A −→ S−1 A, enjoying the universal property that each algebra homomorphism f : A −→ B
such that f (s) is invertible for all s ∈ S can be uniquely extended to an algebra homomorphism
S−1 A −→ B. S−1 A is called the localization of A by S, and the map A −→ S−1 A is called the
localization map.

A B

S−1 A

f

If we identify an element with its image under the localization map, it follows directly from
Ore’s construction that every element of S−1 A has the form s−1a for some s ∈ S and a ∈ A.
Likewise, any element of S−1 A can also be written as bt−1 for some t ∈ S, b ∈ A.

Ore’s localization condition may seem a bit arbitrary at first, but a more thorough investigation
reveals the intuition behind it. The issue in question here is that in the non-commutative case we
can no longer take the existence of common denominators for granted. However, the existence
of common denominators is fundamental to the proof of the fact the field of fractions is a ring
– it is used, for example, to define the sum of two elements in the field of fractions. We thus
need to impose their existence for us to have any hope of defining consistent arithmetics in the
localization of an algebra, and Ore’s condition is actually equivalent to the existence of common
denominators – see the discussion in the introduction of [RW04, ch. 6] for further details.

We should also point out that there are numerous other conditions – which may be easier to
check than Ore’s – known to imply Ore’s condition. For instance. . .

Lemma 5.35. Let S ⊆ A be a multiplicative subset generated by finitely many locally ad-nilpotent
elements – i.e. elements s ∈ S such that for each a ∈ A there exists r > 0 such that ad(s)ra =
[s, [s, · · · [s, a]] · · · ] = 0. Then S satisfies Ore’s localization condition.

In our case, we are more interested in formally inverting the action of Fα on M than in inverting
Fα itself. To that end, we introduce one further construction, known as the localization of a module.

Definition 5.36. Let S ⊆ A be a multiplicative subset satisfying Ore’s localization condition
and M be an A-module. The S−1 A-module S−1M = S−1 A ⊗A M is called the localization of
M by S, and the homomorphism of A-modules

M −→ S−1M
m 7−→ 1 ⊗ m

is called the localization map of M.

Notice that the S−1 A-module S−1M has the natural structure of an A-module, where the action
of A is given by the localization map A −→ S−1 A.
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It is interesting to observe that, unlike in the case of the field of fractions of a commutative
domain, in general the localization map A −→ S−1 A – i.e. the map a 7−→ a

1 – may not be injective.
For instance, if S contains a divisor of zero s, its image under the localization map is invertible
and therefore cannot be a divisor of zero in S−1 A. In particular, if a ∈ A is nonzero and such that
sa = 0 or as = 0 then its image under the localization map has to be 0. However, the existence of
divisors of zero in S turns out to be the only obstruction to the injectivity of the localization map,
as shown in. . .

Lemma 5.37. Let S ⊆ A be a multiplicative subset satisfying Ore’s localization condition and M
be an A-module. If S acts injectively on M then the localization map M −→ S−1M is injective. In
particular, if S has no zero divisors then A is a subalgebra of S−1 A.

Again, in our case we are interested in inverting the actions of the Fα on M. However, for us
to be able to translate between all weight spaces associated with elements of λ + Q, λ ∈ supp M,
we only need to invert the Fα’s for α in some subset of ∆ which spans all of Q = Z∆. In other
words, it suffices to invert Fβ for all β in some basis Σ for ∆. We can choose such a basis to be
well-behaved. For example, we can show. . .

Lemma 5.38. Let M be a simple infinite-dimensional bounded g-module. There is a basis Σ =
{β1, . . . , βr} for ∆ such that the elements Fβi all act injectively on M and satisfy [Fβi , Fβ j ] = 0.

Remark. The basis Σ in Lemma 5.38 may very well depend on the representation M! This is
another obstruction to the functoriality of our constructions.

The proof of the previous Lemma is quite technical and was deemed too tedious to be included
in here. See Lemma 4.4 of [Mat00] for a full proof. Since Fα is locally ad-nilpotent for all α ∈ ∆,
we can see. . .

Corollary 5.39. Let Σ be as in Lemma 5.38 and (Fβ)β∈Σ ⊆ U(g) be the multiplicative subset
generated by the Fβ’s. The K-algebra Σ−1U(g) = (Fβ)

−1
β∈ΣU(g) is well defined. Moreover, if we

denote by Σ−1M the localization of M by (Fβ)β∈Σ, the localization map M −→ Σ−1M is injective.

From now on let Σ be some fixed basis for ∆ satisfying the hypothesis of Lemma 5.38. We now
show that Σ−1M is a weight g-module whose support is an entire Q-coset.

Proposition 5.40. The restriction of the localization Σ−1M is a bounded g-module of degree d with
supp Σ−1M = Q + supp M and dim Σ−1Mλ = d for all λ ∈ supp Σ−1M.

Proof. Fix some β ∈ Σ. We begin by showing that Fβ and F−1
β map the weight space Σ−1Mλ to

Σ−1Mλ−β and Σ−1Mλ+β, respectively. Indeed, given m ∈ Mλ and H ∈ h we have

H · (Fβ · m) = ([H, Fβ] + FβH) · m = Fβ(−β(H) + H) · m = (λ − β)(H)Fβ · m

On the other hand,

0 = [H, 1] = [H, FβF−1
β ] = Fβ[H, F−1

β ] + [H, Fβ]F−1
β = Fβ[H, F−1

β ]− β(H)FβF−1
β ,

so that [H, F−1
β ] = β(H) · F−1

β and therefore

H · (F−1
β · m) = ([H, F−1

β ] + F−1
β H) · m = F−1

β (β(H) + H) · m = (λ + β)(H)F−1
β · m
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From the fact that F±1
β maps Mλ to Σ−1Mλ±β follows our first conclusion: since M is a weight

module and every element of Σ−1M has the form s−1 · m = s−1 ⊗ m for s ∈ (Fβ)β∈Σ and m ∈ M,
we can see that Σ−1M =

⊕
λ Σ−1Mλ. Furthermore, since the action of each Fβ on Σ−1M is bijective

and Σ is a basis for Q we obtain supp Σ−1M = Q + supp M.
Again, because of the bijectivity of the Fβ’s, to see that dim Σ−1Mλ = d for all λ ∈ supp Σ−1M

it suffices to show that dim Σ−1Mλ = d for some λ ∈ supp Σ−1M. We may take λ ∈ supp M with
dim Mλ = d. For any finite-dimensional subspace V ⊆ Σ−1Mλ we can find s ∈ (Fβ)β∈Σ such that
s · V ⊆ M. If s = Fβi1

· · · Fβir
, it is clear s · V ⊆ Mλ−βi1

−···−βir
, so dim V = dim s · V 6 d. This

holds for all finite-dimensional V ⊆ Σ−1Mλ, so dim Σ−1Mλ 6 d. It then follows from the fact that
Mλ ⊆ Σ−1Mλ that Mλ = Σ−1Mλ and therefore dim Σ−1Mλ = d. �

We now have a good candidate for a coherent extension of M, but Σ−1M is still not a coherent
extension since its support is contained in a single Q-coset. In particular, supp Σ−1M 6= h∗ and
Σ−1M is not a coherent family. To obtain a coherent family we thus need somehow extend Σ−1M.
To that end, we will attempt to replicate the construction of the coherent extension of the sl2(K)-
module K[x, x−1]. Specifically, the idea is that if twist Σ−1M by an automorphism which shifts its
support by some λ ∈ h∗, we can construct a coherent family by summing these modules over λ as
in Example 5.22.

For K[x, x−1] this was achieved by twisting the Diff(K[x, x−1])-module K[x, x−1] by the auto-
morphisms ϕλ : Diff(K[x, x−1]) −→ Diff(K[x, x−1]) and restricting the results to U(sl2(K)) via the
map U(sl2(K)) −→ Diff(K[x, x−1]), but this approach is inflexible since not every sl2(K)-module
factors through Diff(K[x, x−1]). Nevertheless, we could just as well twist K[x, x−1] by automor-
phisms of U(sl2(K)) f directly – where U(sl2(K)) f = ( f )−1U(g) is the localization of U(sl2(K))
by the multiplicative subset generated by f .

In general, we may twist the Σ−1U(g)-module Σ−1M by automorphisms of Σ−1U(g). For
λ = β ∈ Σ the map

θβ : Σ−1U(g) −→ Σ−1U(g)

u 7−→ FβuF−1
β

is a natural candidate for such a twisting automorphism. Indeed, we will soon see that θβ(Σ−1M)λ =
Σ−1Mλ+β. However, this is hardly useful to us, since β ∈ Q and therefore β + supp Σ−1M =

supp Σ−1M. If we want to expand the support of Σ−1M we will have to twist by automorphisms
that shift its support by λ ∈ h∗ lying outside of Q.

The situation is much less obvious in this case. Nevertheless, it turns out we can extend the
family {θβ}β∈Σ to a family of automorphisms {θλ}λ∈h∗ . Explicitly. . .

Proposition 5.41. There is a family of automorphisms {θλ : Σ−1U(g) −→ Σ−1U(g)}λ∈h∗ such
that

(i) θk1β1+···+kr βr (u) = Fk1
β1
· · · Fkr

βr
uF−kr

βr
· · · F−k1

β1
for all u ∈ Σ−1U(g) and k1, . . . , kr ∈ Z.

(ii) For each u ∈ Σ−1U(g) the map

h∗ −→ Σ−1U(g)

λ 7−→ θλ(u)

is polynomial.

(iii) If λ, µ ∈ h∗, N is a Σ−1U(g)-module whose restriction to U(g) is a weight g-module and
θλN is the Σ−1U(g)-module N twisted by the automorphism θλ then Nµ = θλNµ+λ. In
particular, supp θλN = λ + supp N.
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Proof. Since the elements Fβ, β ∈ Σ commute with one another, the endomorphisms

θk1β1+···+kr βr : Σ−1U(g) −→ Σ−1U(g)

u 7−→ Fk1
β1
· · · Fkr

βr
uF−kr

β1
· · · F−k1

βr

are well defined for all k1, . . . , kr ∈ Z.
Fix some u ∈ Σ−1U(g). For any s ∈ (Fβ)β∈Σ and k > 0 we have sku = (k

0) ad(s)0usk−0 + · · ·+
(k

k) ad(s)kusk−k. Now if we take ` such ad(Fβ)
`+1u = 0 for all β ∈ Σ we find

θk1β1+···+kr βr (u) = ∑
i1,...,ir=1,...,`

(
k1

i1

)
· · ·

(
kr

ir

)
ad(Fβ1)

i1 · · · ad(Fβr )
ir uF−i1

β1
· · · F−ir

βr

for all k1, . . . , kr ∈ N.
Since the binomial coefficients (x

k) =
x(x−1)···(x−k+1)

k! can be uniquely extended to polynomial
functions in x ∈ K, we may in general define

θλ(u) = ∑
i1,...,ir>0

(
λ1

i1

)
· · ·

(
λr

ir

)
ad(Fβ1)

i1 · · · ad(Fβr )
ir rF−i1

β1
· · · F−ir

βr

for λ1, . . . , λr ∈ K, λ = λ1β1 + · · ·+ λrβr ∈ h∗.
It is clear that the θλ are endomorphisms. To see that the θλ are indeed automorphisms,

notice θ−k1β1−···−kr βr = θ−1
k1β1+···+kr βr

. The uniqueness of the polynomial extensions then implies

θ−λ = θ−1
λ in general: given u ∈ Σ−1U(g), the map

h∗ −→ Σ−1U(g)

λ 7−→ θλ(θ−λ(u))− u

is a polynomial extension of the zero map Zβ1 ⊕ · · · ⊕ Zβr −→ Σ−1U(g) and is therefore identi-
cally zero.

Finally, let N be a Σ−1U(g)-module whose restriction is a weight module. If n ∈ N then

n ∈ θλNµ+λ ⇐⇒ θλ(H) · n = (µ + λ)(H)n ∀H ∈ h

But
θβ(H) = FβHF−1

β = ([Fβ, H] + HFβ)F−1
β = (β(H) + H)FβF−1

β = β(H) + H

for all H ∈ h and β ∈ Σ. In general, θλ(H) = λ(H) + H for all λ ∈ h∗ and hence

n ∈ θλNµ+λ ⇐⇒ (λ(H) + H) · n = (µ + λ)(H)n ∀H ∈ h

⇐⇒ H · n = µ(H)n ∀H ∈ h

⇐⇒ n ∈ Nµ

,

so that θλNµ+λ = Nµ. �

It should now be obvious. . .

Proposition 5.42 (Mathieu). There exists a coherent extension M of M.

Proof. Take4

M =
⊕

λ+Q∈h∗/Q

θλ(Σ−1M)

4Here we fix some λξ ∈ ξ for each Q-coset ξ ∈ h∗/Q. While there is a natural isomorphism θλ(Σ−1 M)
∼−−→ θµ(Σ−1 M) for

each µ ∈ λ + Q, they are not the same g-modules strictly speaking. This is yet another obstruction to the functoriality of
our constructions.
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It is clear M lies in Σ−1M = θ0(Σ−1M) and therefore M ⊆ M. On the other hand, dimMµ =

dim θλ(Σ−1M)µ = dim Σ−1Mµ−λ = d for all µ ∈ λ + Q – λ standing for some fixed representative
of its Q-coset. Furthermore, given u ∈ U(g)0 and µ ∈ λ + Q,

Tr(u�Mµ) = Tr(θλ(u)�Σ−1 Mµ−λ
)

is polynomial in µ because of the second item of Proposition 5.41. �

Lo and behold. . .

Theorem 5.43 (Mathieu). There exists a unique semisimple coherent extension Ext(M) of M.
More precisely, if M is any coherent extension of M, then Mss ∼= Ext(M). Furthermore, Ext(M)
is an irreducible coherent family.

Proof. The existence part should be clear from the previous discussion: it suffices to fix some
coherent extension M of M and take Ext(M) = Mss.

To see that Ext(M) is irreducible, recall from Corollary 5.29 that M is a g-submodule of
Ext(M). Since the degree of M is the same as the degree of Ext(M), some of its weight
spaces have maximal dimension inside of Ext(M). In particular, it follows from Lemma 5.30
that Ext(M)λ = Mλ is a simple U(g)0-module for some λ ∈ supp M.

As for the uniqueness of Ext(M), fix some other semisimple coherent extension N of M. We
claim that the multiplicity of a given simple g-module L in N is determined by its trace function

h∗ ×U(g)0 −→ K
(λ, u) 7−→ Tr(u�Nλ

)

It is a well known fact of the theory of modules that, given an associative K-algebra A, a
finite-dimensional semisimple A-module L is determined, up to isomorphism, by its character

χL : A −→ K
a 7−→ Tr(a�L)

In particular, the multiplicity of L in N, which is the same as the multiplicity of Lλ in Nλ,
is determined by the character χ

Nλ
: U(g)0 −→ K. Since this holds for all simple weight g-

modules, it follows that N is determined by its trace function. Of course, the same holds for
Ext(M). We now claim that the trace function of N is the same as that of Ext(M). Clearly,
Tr(u �Ext(M)λ

) = Tr(u �Mλ
) = Tr(u �Nλ

) for all λ ∈ suppess M, u ∈ U(g)0. Since the essential
support of M is Zariski-dense and the maps λ 7−→ Tr(u �Ext(M)λ

) and λ 7−→ Tr(u �Nλ
) are

polynomial in λ ∈ h∗, it follows that these maps coincide for all u.
In conclusion, N ∼= Ext(M) and Ext(M) is unique. �

A sort of “reciprocal” of Theorem 5.43 also holds. Namely. . .

Proposition 5.44. Let M be a semisimple irreducible coherent family and M ⊆ M be an infinite-
dimensional simple submodule. Then M ∼= Ext(M). In particular, all semisimple coherent families
have the form M ∼= Ext(M) for some simple bounded g-module M.

Proof. Since M ⊆ M, M is bounded and suppess M is Zariski-dense. In addition, it follows from
Lemma 5.32 that U = {λ ∈ h∗ : Mλ is a simple U(g)0-module} is a Zariski-open subset – which
is non-empty since M is irreducible.

Hence there is some λ ∈ suppess M ∩ U. In particular, there is some λ ∈ suppess M such that
Mλ = Mλ and thus deg M = dimMλ = degM. This implies that M is a coherent extension of M,
so that by the uniqueness of semisimple irreducible coherent extensions we get M ∼= Ext(M). �
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Having thus reduced the problem of classifying the cuspidal g-modules to that of understand-
ing semisimple irreducible coherent families, the only remaining question for us to tackle is: what
are the coherent g-families? This turns out to be a decently complicated question on its own, and
we will require a full chapter to answer it. This will be the focus of our final chapter.
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Chapter 6

Classification of Coherent Families

Proposition 6.1. Suppose g = s1 ⊕ · · · ⊕ sr and let M be a semisimple irreducible coherent g-
family. Then there are semisimple irreducible coherent si-families Mi such that

M ∼= M1 ⊗ · · · ⊗Mr

Proof. Suppose hi ⊆ si are Cartan subalgebras, h = h1 ⊕ · · · ⊕ hr and d = degM. Let M ⊆ M be
any infinite-dimensional simple submodule, so that M is a semisimple coherent extension of M.
By Example 5.8, there exists (unique) simple weight si-modules Mi such that M ∼= M1 ⊗ · · · ⊗ Mr.
Take Mi = Ext(Mi). We will show that M1 ⊗ · · · ⊗Mr is a coherent extension of M.

It is clear that M1 ⊗ · · · ⊗Mr is a degree d bounded g-module containing M as a submodule. It
thus suffices to show that M is a coherent family. By Example 5.11, suppess(M1 ⊗ · · · ⊗Mr) = h∗.
To see that the map

h∗ −→ K
λ 7−→ Tr(u�(M1⊗···⊗Mr)λ

)

is polynomial, notice that the natural isomorphism of algebras

f : U(s1)⊗ · · · ⊗U(s1)
∼−−→ U(g)

u1 ⊗ · · · ⊗ ur 7−→ u1 · · · ur

described in Example 1.43 is a g-homomorphism between the tensor product of the adjoint si-
modules U(si) and the adjoint g-module U(g).

Indeed, given X = X1 + · · ·+ Xr ∈ g with Xi ∈ si and ui ∈ U(si),

f (X · (u1 ⊗ · · · ⊗ ur)) = f ([X1, u1]⊗ u2 ⊗ · · · ⊗ ur) + · · ·+ f (u1 ⊗ · · · ⊗ ur−1 ⊗ [Xr, ur])

= [X1, u1]u2 · · · ur + · · ·+ u1 · · · ur−1[Xr, ur]

([Xi, uj] = 0 for i 6= j) = [X1, u1u2 · · · ur] + · · ·+ [Xr, u1 · · · ur−1ur]

= [X, f (u1 ⊗ · · · ⊗ ur)]

Hence by Example 5.9 f restricts to an isomorphism of algebras U(s1)0 ⊗ · · · ⊗U(sr)0
∼−−→

U(g)0 with image U(g)0 = U(s1)0 · · ·U(sr)0. More importantly, if we write λ = λ1 + · · · + λr
for λi ∈ h∗i it is clear from Example 5.7 that the U(g)0-module (M1 ⊗ · · · ⊗Mr)λ corresponds to
exactly the U(s1)0 ⊗ · · · ⊗U(sr)0-module (M1)λ1 ⊗ · · · ⊗ (Mr)λr , so we can see that the value

Tr(u1 · · · ur �(M1⊗···⊗Mr)λ
) = Tr(u1 �(M1)λ1

) · · ·Tr(ur �(Mr)λr
)

varies polynomially with λ ∈ h∗ for all ui ∈ U(si)0.
Finally, M1 ⊗ · · · ⊗Mr is a coherent extension of M. Since the Mi = Ext(Mi) are semisimple,

so is M1 ⊗ · · · ⊗Mr. It thus follows from the uniqueness of semisimple coherent extensions that
M ∼= M1 ⊗ · · · ⊗Mr. �

71
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This last result allows us to concentrate on focus exclusive on classifying coherent s-families for
the simple Lie algebras s. In addition, it turns out that very few simple algebras admit irreducible
coherent families at all. Namely. . .

Proposition 6.2 (Fernando). Let s be a finite-dimensional simple Lie algebra and suppose there
exists a infinite-dimensional cuspidal s-module. Then s ∼= sln(K) or s ∼= sp2n(K) for some n.

Corollary 6.3. Let s be a finite-dimensional simple Lie algebra and suppose there exists an irre-
ducible coherent s-family. Then s ∼= sln(K) or s ∼= sp2n(K) for some n.

The problem of classifying the semisimple irreducible coherent g-families for some arbitrary
semisimple g can thus be reduced to a proof by exaustion: it suffices to classify coherent sln(K)-
families and coherent sp2n(K)-families. We will follow this path by analysing each case – sln(K)
and sp2n(K) – separately, classifying coherent families in terms of combinatorial invariants – as
does Mathieu in [Mat00, sec. 8, sec. 9]. Alternatively, Mathieu also provides a more explicit
“geometric” construction of the coherent families for both sln(K) and sp2n in sections 11 and 12 of
his paper.

Before we proceed to the individual case analysis, however, we would like discuss some further
reductions to our general problem, the first of which is a crutial refinement to Proposition 5.44
due to Mathieu.

Proposition 6.4. Let M be a semisimple irreducible coherent g-family. Then there exists some
λ ∈ h∗ such that L(λ) is bounded and M ∼= Ext(L(λ)).

Remark. I once had the opportunity to ask Olivier Mathieu himself how he first came across the
notation of coherent families and what was his intuition behind it. Unfortunately, his responce
was that he “did not remember.” However, Mathieu was able to tell me that “the trick is that I
managed to show that they all come from simple highest-weight modules, which were already
well understood.” I personally find it likely that Mathieu first considered the idea of twisting
L(λ) – for λ with L(λ) bounded – by a suitable automorphism θµ : Σ−1U(g)

∼−−→ Σ−1U(g), as in
the proof of Proposition 5.42, and only after decided to agregate this data in a coherent family by
summing over the Q-cosets µ + Q, µ ∈ h∗.

In case the significance of Proposition 6.4 is unclear, the point is that it allows is to reduce the
problem of classifying the coherent g-families to that of aswering the following two questions:

(i) When is L(λ) bounded?

(ii) Given λ, µ ∈ h∗ with L(λ) and L(µ) bounded, when is Ext(L(λ)) ∼= Ext(L(µ))?

These are the questions which we will attempt to answer for g = sln(K) and g = sp2n(K). We
begin by providing a partial answer to the second answer by introducing an invariant of coherent
families, known as its central character.

To describe this invariant, we consider the Verma module M(λ) = U(g) · m+. Given µ ∈ h∗

and m ∈ M(λ)µ, it is clear that u · m ∈ M(λ)µ for all central u ∈ U(g). In particular, u · m+ ∈
M(λ)λ = Km+ is a scalar multiple of m+ for all u ∈ Z(U(g)), say χ

λ(u)m+ for some χ
λ(u) ∈ K.

More generally, if we take any m = v · m+ ∈ M(λ) we can see that

u · m = v · (u · m+) = χ
λ(u) v · m+ = χ

λ(u)m

Since every highest-weight module is a quotient of a Verma module, it follows that u ∈
Z(U(g)) acts on a highest-weight module M of highest-weight λ via multiplication by χ

λ(u).
In addition, it is clear that the function χ

λ : Z(U(g)) −→ K must be an algebra homomorphism.
This leads us to the following definition.
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Definition 6.5. Given a highest weight g-module M of highest weight λ, the unique algebra
homomorphism χ

λ : Z(U(g)) −→ K such that u · m = χ
λ(u)m for all m ∈ M and u ∈

Z(U(g)) is called the central character of M or the central character associated with the weight λ.

Since a simple highest-weight g-module is uniquelly determined by is highest-weight, it is
clear that central characters are invariants of simple highest-weight modules. We should point out
that these are far from perfect invariants, however. Namelly. . .

Theorem 6.6 (Harish-Chandra). Given λ, µ ∈ h∗, χ
λ = χµ if, and only if µ ∈ W • λ.

This and much more can be found in [E H08, ch. 1]. What is interesting about all this to us is
that, as it turns out, central character are also invariants of coherent families. More specifically. . .

Proposition 6.7. Suppose λ, µ ∈ h∗ are such that L(λ) and L(µ) are both bounded and
Ext(L(λ)) ∼= Ext(L(µ)). Then χ

λ = χµ. In particular, µ ∈ W • λ.

Proof. Fix u ∈ U(g)0. It is clear that Tr(u �Ext(L(λ))ν
) = Tr(u �L(λ)ν

) = dχ
λ(u) for all ν ∈

suppess L(λ). Since suppess L(λ) is Zariski-dense and the map ν 7−→ Tr(u �Ext(L(λ))ν
) is poly-

nomial, it follows that Tr(u�Ext(L(λ))ν
) = dχ

λ(u) for all ν ∈ h∗. But by the same token

dχ
λ(u) = Tr(u�Ext(L(λ))ν

) = Tr(u�Ext(L(µ))ν
) = dχµ(u)

for any ν ∈ suppess L(µ) and thus χ
λ(u) = χµ(u). �

Central characters may thus be used to distinguished between two semisimple irreducible
coherent families. Unfortunately for us, as in the case of simple highest-weight modules, central
characters are not perfect invariants of coherent families: there are non-isomorphic semisimple
irreducible coherent families which share a common central character. Nevertheless, Mathieu
was able to at least establish a somewhat precarious version of the converse of Proposition 6.7.
Namelly. . .

Lemma 6.8. Let β ∈ Σ and λ /∈ P+ be such that. L(λ) is bounded and λ(Hβ) /∈ N. Then
L(σβ •λ) ⊆ Ext(L(λ)). In particular, if σβ •λ /∈ P+ then L(σβ) is a bounded infinite-dimensional
g-module and Ext(L(σβ • λ)) ∼= Ext(L(λ)).

Remark. We should point out that, while it may very well be that σβ • λ ∈ P+, there is generally
only a slight chance of such an event happening. Indeed, given λ ∈ h∗, its orbit W • λ meets P+

precisely once, so that the probability of σβ • λ ∈ P+ for some random λ ∈ h∗ is only 1/|W • λ|.
With the odds stacked in our favor, we will later be able to exploit the second part of Lemma 6.8
without much difficulty!

While technical in nature, this lemma already allows us to classify all semisimple irreducible
coherent sl2(K)-families.

Example 6.9. Let g = sl2(K). It follows from Example 4.42 that M(λ) is a bounded sl2(K) of
degree 1, so that L(λ) is bounded – with deg L(λ) = 1 – for all λ ∈ K ∼= h∗. In addition, a
simple calculation shows W • λ = {λ,−λ − 2}. This implies that if λ, µ /∈ P+ = N are such that
Ext(L(λ)) ∼= Ext(L(µ)) then µ = λ or µ = −λ− 2. Finally, by Lemma 6.8 the converse also holds:
if λ,−λ − 2 /∈ P+ then Ext(L(λ)) ∼= Ext(L(−λ − 2)).
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6.1 Coherent sp2n(K)-families

Consider the Cartan subalgebra h ⊆ sp2n(K) of diagonal matrices, as in Example 4.5, and the
basis Σ = {β1, . . . , βn} for ∆ given by βi = εi − εi+1 for i < n and βn = 2εn. Here εi : h −→ K is
the linear functional which yields the i-th entry of the diagonal of a given matrix, as described in
Example 4.24. Also fix ρ = 1/2β1 + · · ·+ 1/2βn.

Lemma 6.10. Then L(λ) is bounded if, and only if

(i) λ(Hβi ) is non-negative integer for all i 6= n.

(ii) λ(Hβn) ∈ 1
2 + Z.

(iii) λ(Hβn−1 + 2Hβn) > −2.

Proposition 6.11. The map

m : h∗ −→ Kn

λ 7−→ (κ(ε1, λ + ρ), . . . , κ(εn, λ + ρ))

is W-equivariant bijection, where the action W ∼= Sn n (Z/2Z)n on h∗ is given by the dot action
and the action of W on Kn is given my permuting coordinates and multiplying them by ±1. A
weight λ ∈ h∗ satisfies the conditions of Lemma 6.10 if, and only if m(λ)i ∈ 1/2 + Z for all i and
m(λ)1 > m(λ)2 > · · · > m(λ)n−1 > ±m(λ)n.

Proof. The fact m : h∗ −→ Kn is a bijection is clear from the fact that {ε1, . . . , εn} is an orthonormal
basis for h∗. Veryfying that L(λ) is bounded if, and only if m(λ)1 > m(λ)2 > · · · > m(λ)n−1 >
±m(λ)n is also a simple combinatorial affair.

The only part of the statement worth proving is the fact that m is an equivariant map, which
is equivalent to showing the map

h∗ −→ Kn

λ 7−→ (κ(ε1, λ), . . . , κ(εn, λ))

is equivariant with respect to the natural action of W on h∗. But this also clear from the isomor-
phism W ∼= Sn n (Z/2Z)n, as described in Example 4.35: (σi, (0̄, . . . , 0̄)) = σβi permutes εi and
εi+1 for i < n and (1, (0̄, . . . , 0̄, 1̄)) = σβn flips the sign of εn. Hence m(σβi · εj) = σβi · m(εj) for all
i and j. Since W is generated by the σβi , this implies that the required map is equivariant. �

Definition 6.12. We denote by B the set of the m ∈ (1/2 + Z)n such that m1 > m2 > · · · >
mn−1 > ±mn. We also consider the canonical partition B = B+ ∪B− where B+ = {m ∈
B : mn > 0} and B− = {m ∈ B : mn < 0}.

Theorem 6.13 (Mathieu). Given λ and µ satisfying the conditions of Lemma 6.10, Ext(L(λ)) ∼=
Ext(L(µ)) if, and only if m(λ)i = m(µ)i for i < n and m(λ)n = ±m(µ)n. In particular, the
isomorphism classes of semisimple irreducible coherent sp2n(K)-families are parameterized by B+.

Proof. Let λ, µ /∈ P+ be such that L(λ) and L(µ), so that m(λ), m(µ) ∈ B.
Suppose Ext(L(λ)) ∼= Ext(L(µ)). By Proposition 6.7, χ

λ = χµ. It thus follows from the
Harish-Chandra Theorem that µ ∈ W • λ. Since m is equivariant, m(µ) ∈ W · m(λ). But the only
elements in of B in W · m(λ) are m(λ) and (m(λ)1, m(λ)2, . . . , m(λ)n−1,−m(λ)n).
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Conversely, if m(λ)i = m(µ)i for i < n and m(µ)n = −m(λ)n then m(µ) = σβn · m(λ) and
µ = σn • λ. Since m(λ) ∈ B, λ(Hβn) ∈ 1/2 + Z and thus λ(Hβn) /∈ N. Hence by Lemma 6.8
L(µ) ⊆ Ext(L(λ)) and Ext(L(µ)) ∼= Ext(L(λ)).

For each semisimple irreducible coherent sp2n(K)-family M there is some m = m(λ) ∈ B such
that M = Ext(L(λ)). The only other m′ ∈ B which generates the same coherent family as m is
m′ = σβn · m. Since m and m′ lie in different elements of the partition B = B+ ∪ B−, the is a
unique m′′ = m(ν) ∈ B+ – either m or m′ – such that M ∼= Ext(L(ν)). �

6.2 Coherent sln(K)-families

Consider the Cartan subalgebra h ⊆ sln(K) of diagonal matrices, as in Example 4.4, and the basis
Σ = {β1, . . . , βn−1} for ∆ given by βi = εi − εi+1 for i < n. Here εi : h −→ K is the linear functional
which yields the i-th entry of the diagonal of a given matrix, as described in Example 4.23. Also
fix ρ = 1/2β1 + · · ·+ 1/2βn−1.

Lemma 6.14. Let λ /∈ P+ and A(λ) = {i : λ(Hβi ) is not a non-negative integer}. Then L(λ) is
bounded if, and only if one of the following assertions holds.

(i) A(λ) = {1} or A(λ) = {n − 1}.

(ii) A(λ) = {i} for some 1 < i < n − 1 and (λ + ρ)(Hβi−1 + Hβi ) or (λ + ρ)(Hβi + Hβi+1) is
a positive integer.

(iii) A(λ) = {i, i + 1} for some 1 6 i < n − 1 and (λ + ρ)(Hβi + Hβi+1) is a positive integer.

Definition 6.15. A sln-sequence m is a n-tuple m = (m1, . . . , mn) ∈ Kn such that m1 + · · ·+
mn = 0.

Definition 6.16. A k-tuple m = (m1, . . . , mk) ∈ Kk is called ordered if mi − mi+1 is a positive
integer for all i < k.

Proposition 6.17. The map

m : h∗ −→ {sln-sequences}
λ 7−→ 2n(κ(ε1, λ + ρ), . . . , κ(εn, λ + ρ))

is W-equivariant bijection, where the action W ∼= Sn on h∗ is given by the dot action and the action
of W on the space of sln-sequences is given my permuting coordinates. A weight λ ∈ h∗ satisfies the
conditions of Lemma 6.14 if, and only if m(λ) is not ordered, but becomes ordered after removing
one term.

The proof of this result is very similar to that of Proposition 6.11 in spirit: the equivariance
of the map m : h∗ −→ {sln-sequences} follows from the nature of the isomorphism W ∼= Sn as
described in Example 4.34, while the rest of the proof amounts to simple technical verifications.
The number 2n is a normalization constant chosen because λ(Hβ) = 2n κ(λ, β) for all λ ∈ h∗ and
β ∈ Σ. Hence m(λ) is uniquely characterized by the property that (λ+ ρ)(Hβi ) = m(λ)i −m(λ)i+1
for all i, which is relevant to the proof of the equivalence between the contiditions of Lemma 6.14
and those explained in the last statement of Proposition 6.17.
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Definition 6.18. We denote by B the set of sln-sequences m which are not ordered, but
becomes ordered after removing one term. We also consider the extremal subsets B+ =
{m ∈ B : (m̂1, m2, . . . , mn) is ordered} and B− = {m ∈ B : (m1, . . . , mn−1, m̂n) is ordered}.

The issue here is that the relationship between λ, µ ∈ P+ with m(λ), m(µ) ∈ B andExt(L(λ)) ∼=
Ext(L(µ)) is more complicated than in the case of sp2n(K). Nevertheless, Lemma 6.8 affords us a
criteria for verifying that Ext(L(λ)) ∼= Ext(L(µ)). For σ = σi and the weight λ+ ρ, the hypothesis
of Lemma 6.8 translates to m(λ)i − m(λ)i+1 = (λ + ρ)(Hβi ) /∈ N. If m(λ) ∈ B, this is equivalent
to requiring that m(λ) is not ordered, but becomes ordered after removing its i-th term. This
discussions losely inspires the following definition, which endows the set B with the structure of
a directed graph.

Definition 6.19. Given m, m′ ∈ B, say there is an arrow m −→ m′ if there some i such that
mi − mi+1 is not a positive integer and m′ = σi · m.

It should then be obvious from Lemma 6.8 that. . .

Proposition 6.20. Let λ /∈ P+ be such that L(λ) is bounded – so that m(λ) ∈ B – and suppose
that µ ∈ h∗ is such that m(µ) ∈ B and there is an arrow m(λ) −→ m(µ). Then L(µ) is also
bounded and Ext(L(µ)) ∼= Ext(L(λ)).

A weight λ ∈ h∗ is called regular if (λ + ρ)(Hα) 6= 0 for all α ∈ ∆. In terms of sln-sequences,
λ is regular if, and only if m(λ)i 6= m(λ)j for all i 6= j. It thus makes sence to call a sln-sequence
regular or singular if mi 6= mj for all i 6= j or mi = mj for some i 6= j, respectively. Similarly, λ is
integral if, and only if m(λ)i − m(λ)j ∈ Z for all i and j, so it makes sence to call a sln-sequence m
integral if mi − mj ∈ Z for all i and j.
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Lemma 6.21. The connected component of some m ∈ B is given by the following.

(i) If m is regular and integral then there exists1 a unique ordered m′ ∈ W · m, in which case the
connected component of m is given by

σ1σ2 · · · σi · m′ σ2 · · · σi · m′ · · · σi−1σi · m′

σi · m′ σi+1σi · m′ · · · σn−1 · · · σi · m′

for some unique i, with σ1 · · · σi · m′ ∈ B+ and σn−1 · · · σi · m′ ∈ B−.

(ii) If m is singular then there exists unique m′ ∈ W · m and i such that m′
i = m′

i+1 and

(m′
1, · · · , m′

i−1, m̂′
i, m′

i+1, . . . , m′
n) is ordered, in which case the connected component of m is

given by

σ1σ2 · · · σi−1 · m′ σ2 · · · σi−1 · m′ · · · σi−1 · m′

m′ σi+1 · m′ · · · σn−1 · · · σi+1 · m′

with σ1 · · · σi−1 · m′ ∈ B+ and σn−1 · · · σi+1 · m′ ∈ B−.

(iii) If m is non-integral then there exists unique m′ ∈ W · m with m′ ∈ B+, in which case the
connected component of m is given by

m′ σ1 · m′ σ2σ1 · m′ · · · σn−1 · · · σ1 · m′

with σn−1 · · · σ1 · m′ ∈ B−.

Theorem 6.22 (Mathieu). Given λ, µ /∈ P+ with L(λ) and L(µ) bounded, Ext(L(λ)) ∼=
Ext(L(µ)) if, and only if m(λ) and m(µ) lie in the same connected component of B. In particular,
the isomorphism classes of semisimple irreducible coherent sln(K)-families are parameterized by the
set π0(B) of the connected components of B, as well as by B+.

Proof. Let λ, µ /∈ P+ be such that L(λ) and L(µ), so that m(λ), m(µ) ∈ B.
It is clear from Proposition 6.20 that if m(λ) and m(µ) lie in the same connected component of

B then Ext(L(λ)) ∼= Ext(L(µ)). On the other hand, if Ext(L(λ)) ∼= Ext(L(µ)) then χ
λ = χµ and

thus µ ∈ W • λ. We now investigate which elements of W • λ satisfy the conditions of Lemma 6.14.
To do so, we describe the set B∩ W · m(λ).

If λ is regular and integral then the only permutations of m(λ) which lie in B are σkσk+1 · · · σi ·
m′ for k 6 i and σkσk−1 · · · σi · m′ for k > i, where m′ is the unique ordered element of W · m(λ).
Hence by Lemma 6.21 B ∩ W · m(λ) is the union of the connected components of the σi · m′ for
i 6 n. On the other hand, if λ is singular or non-integral then the only permutations of m(λ)
which lie in B are the ones from the connected component of m(λ) in B, so that B ∩ W · m(λ) is
exactly the connected component of m(λ).

In both cases, we can see that if B(λ) is the set of the m′ = m(µ) ∈ B such that Ext(L(µ)) ∼=
Ext(L(λ)) then B(λ) ⊆ B ∩ W · m(λ) is contain in a union of connected components of B –
including that of m(λ) itself. We now claim that B(λ) is exactly the connected component of
m(λ). This is already clear when λ is singular or non-integral, so we may assume that λ is regular
and integral, in which case every other µ ∈ W • λ is regular and integral.

In this situation, m(µ) ∈ B+ implies µ(Hβ1) = m(µ)1 − m(µ)2 ∈ Z is negative. But it follows
from Lemma 6.8 that for each β ∈ Σ there is at most one µ /∈ P+ with Ext(L(µ)) ∼= Ext(L(λ))

1Notice that in this case m′ /∈ B, however.
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such that µ(Hβ) is a negative integer – see Lemma 6.5 of [Mat00]. Hence there is at most one
m′ ∈ B+ ∩ W · m(λ). Since every connected component of B meets B+ – see Lemma 6.21 – this
implies B(λ) is precisely the connected component of m(λ).

Another way of putting it is to say that Ext(L(λ)) ∼= Ext(L(µ)) if, and only if m(λ) and
m(µ) lie in the same connected component – which is, of course, precisely the first part of our
theorem! There is thus a one-to-one correspondance between π0(B) and the isomorphism classes
of semisimple irreducible coherent sln(K)-families. Since every connected component of B meets
B+ precisely once – again, see Lemma 6.21 – we also get that such isomorphism classes are
parameterized by B+. �

This construction also brings us full circle to the beginning of these notes, where we saw in
Proposition 1.44 that g-modules may be understood as geometric objects. In fact, throughout the
previous four chapters we have seen a tremendous number of geometrically motivated examples,
which further emphasizes the connection between representation theory and geometry. I would
personally go as far as saying that the beautiful interplay between the algebraic and the geometric
is precisely what makes representation theory such a fascinating and charming subject.

Alas, our journey has come to an end. All it is left is to wonder at the beauty of Lie algebras
and their representations.
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