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Chapter 1

Introduction

Ever since ancestral humans first stepped foot on the surface of Earth, Mankind has pondered the
shape of the planet we inhabit. More recently, mathematicians have spent the past centuries trying to
understand the topology of manifolds and, in particular, surfaces. Orientable compact surfaces were
perhaps first classified by Gauss in the early 19th century. The proof of the following formulation of
the classification, often attributed to Möbius, was completed in the 1920s with the work of Radò and
others.

Theorem 1.1 (Classification of surfaces). Any closed connected orientable surface is homeomorphic
to the connected sum Σ6 of the sphere S2 with 6 ¾ 0 copies of the torus T 2 = ℝ2/ℤ2. Any compact
connected orientable surface Σ is homeomorphic to the surface Σ1

6 obtained from Σ6 by removing 1 ¾ 0
open disks with disjoint closures.

The integer 6 ¾ 0 in Theorem 1.1 is called the genus of Σ. We also have the noncompact surface
Σ1
6,A = Σ1

6 r {G1, . . . , GA }, where G1, . . . , GA lie in the interior of Σ1
6 . The points G1, . . . , GA are called the

punctures of Σ1
6,A . Throughout these notes, all surfaces considered will be of the form Σ = Σ1

6,A . Any
such Σ admits a natural compactification Σ obtained by filling its punctures. We denote Σ6,A = Σ0

6,A . All
closed curves U, V ⊆ Σ we consider lie in the interior of Σ and intersect transversely. Unless explicitly
stated otherwise, the curves U, V are assumed to be unoriented – i.e. we regard them as subsets of Σ.

Despite the apparent clarity of the picture painted by Theorem 1.1, there are still plenty of inter-
esting, sometimes unanswered, questions about surfaces and their homeomorphisms. For instance, we
can use the classification of surfaces to deduce information about how di�erent curves in Σ are related
by its homeomorphisms.

Observation 1.2 (Change of coordinates principle). Given oriented nonseparating simple closed
curves U, V : S1 −→ Σ = Σ1

6,A , we can find an orientation-preserving homeomorphism q : Σ ∼−−→ Σ

fixing mΣ pointwise such that q(U) = V with orientation. To see this, we consider the surface ΣU ob-
tained by cutting Σ along U: we subtract the curve U from Σ and then add one additional boundary
component X8 in each side of U, as shown in Figure 1.1. By identifying X1 with X2 we can see Σ as a
quotient of ΣU.

Since U is nonseparating, ΣU is a connected surface of genus 6 − 1. In other words, ΣU � Σ1+2
6−1,A .

Similarly, ΣV � Σ1+2
6−1,A also has two additional boundary components X′1, X

′
2 ⊆ mΣV . Now by the classi-

fication of surfaces we can find an orientation-preserving homeomorphism q̃ : ΣU
∼−−→ ΣV . Even more

so, we can choose q̃ taking X8 to X′
8
. The homeomorphism q̃ then descends to a self-homeomorphism

q of the quotient surface Σ � ΣU/∼ � ΣV/∼ with q(U) = V, as desired.

By cutting Σ along curves U, U′ ⊆ Σ crossing once, we can also show the following result.

Observation 1.3. Let U, V, U′, V′ ⊆ Σ be nonseparating curves such that each pair (U, U′), (V, V′)
crosses exactly once. Then we can find an orientation-preserving q : Σ ∼−−→ Σ fixing mΣ pointwise such
that q(U) = V and q(U′) = V′ – without orientation.

1



2 Chapter 1. Introduction

Figure 1.1: The surface ΣU � Σ1+2
6−1,A for a certain U ⊆ Σ.

Given a surface Σ, the group Homeo+ (Σ, mΣ) of orientation-preserving homeomorphisms of Σ

fixing each point in mΣ is a topological group1 with a rich geometry, but its algebraic structure is often
regarded as too complex to tackle. More importantly, all of this complexity is arguably unnecessary
for most topological applications, in the sense that usually we are only really interested in considering
homeomorphisms up to isotopy. For example,

(i) Isotopic q ' k ∈ Homeo+ (Σ, mΣ) determine the same application q∗ = k∗ : c1 (Σ, G) −→ c1 (Σ, G)
and q∗ = k∗ : �1 (Σ,ℤ) −→ �1 (Σ,ℤ) at the levels of homotopy and homology.

(ii) The di�eomorphism class of the mapping torus "q = Σ × [0, 1]/(G, 0) ∼ (q (G ) , 1) – a fundamental
construction in low-dimensional topology – is invariant under isotopy.

It is thus more natural to consider the group of connected components of Homeo+ (Σ, mΣ), a count-
able discrete group known as the mapping class group. This will be the focus of the dissertation at hand.

De�nition 1.4. The mapping class groupMod(Σ) of an orientable surface Σ is the group of isotopy
classes of orientation-preserving homeomorphisms Σ ∼−−→ Σ, where both the homeomorphisms
and the isotopies are assumed to fix mΣ pointwise.

Mod(Σ) = Homeo+ (Σ, mΣ)/'

There are many variations of Definition 1.4.

Observation 1.5. Any q ∈ Homeo+ (Σ, mΣ) extends uniquely to a homeomorphism q̃ of Σ that per-
mutes the set {G1, . . . , GA } = ΣrΣ of punctures of Σ. We may thus define an actionMod(Σ)

�

{G1, . . . , GA }
via 5 · G8 = q̃(G8) for 5 = [q] ∈ Mod(Σ) – which is independent of the choice of representative q of 5 .

De�nition 1.6. Given an orientable surface Σ and a puncture G ∈ Σ of Σ, denote by
Mod(Σ, G) ⊆ Mod(Σ) the subgroup of mapping classes that fix G. The pure mapping class group
PMod(Σ) ⊆ Mod(Σ) of Σ is the subgroup of mapping classes that fix every puncture of Σ.

Observation 1.7. Given an oriented simple closed curve U : S1 −→ Σ, denote by
−−→
[U] and [U] the

isotopy classes of U with and without orientation, respectively – i.e
−−→
[U] =

−−→
[V] if U ' V as functions and

[U] = [V] if
−−→
[U] =

−−→
[V] or

−−→
[U] =

−−−−→
[V−1]. There are natural actions Mod(Σ)

�

{
−−→
[U] | U : S1 −→ Σ} and

Mod(Σ)

�

{[U] | U ⊆ Σ} given by

5 ·
−−→
[U] =

−−−−−→
[q(U)] 5 · [U] = [q(U)]

for 5 = [q] ∈ Mod(Σ).

De�nition 1.8. Given a simple closed curve U ⊆ Σ, we denote by Mod(Σ)−−→[U] and Mod(Σ)[U]
the subgroups of mapping classes that fix

−−→
[U] – for any given choice of orientation of U – and

[U], respectively.

1Here we endow Homeo+ (Σ, mΣ) with the compact-open topology.
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While trying to understand the mapping class group of some surface Σ, it is interesting to con-
sider how the geometric relationship between Σ and other surfaces a�ects Mod(Σ). Indeed, di�erent
embeddings Σ′ ↩−→ Σ translate to homomorphisms at the level of mapping class groups.

Example 1.9 (Inclusion homomorphism). Let Σ′ ⊆ Σ be a closed subsurface. Given q ∈ Homeo+ (Σ′, mΣ′),
we may extend q to q̃ ∈ Homeo+ (Σ, mΣ) by setting q̃(G) = G for G ∈ Σ outside of Σ′ – which is well
defined since q fixes every point in mΣ′. This construction yields a group homomorphism

Mod(Σ′) −→ Mod(Σ)
[q] ↦−→ [q̃],

known as the inclusion homomorphism.

Example 1.10 (Capping homomorphism). Let X ⊆ mΣ be a boundary component of Σ. We refer to
the inclusion homomorphism cap : Mod(Σ) −→ Mod(Σ ∪X (D2 r {0})) as the capping homomorphism.

Example 1.11 (Cutting homomorphism). Given a simple closed curve U ⊆ Σ, any 5 ∈ Mod(Σ6+1)−−→[U]
has a representative q ∈ Homeo+ (Σ, mΣ) fixing U point-wise – so that q restricts to a homeomorphism
of Σ r U. Furthermore, if q �ΣrU' 1 in Σ r U then q ' 1 ∈ Homeo+ (Σ, mΣ) – see [1, Proposition 3.20].
There is thus a group homomorphism

cut : Mod(Σ)−−→[U] −→ Mod(Σ r U)

[q] ↦−→ [q�ΣrU],

known as the cutting homomorphism.

As goes for most groups, another approach to understanding the mapping class group of a given
surface Σ is to study its actions. We have already seen simple examples of such actions in Observa-
tion 1.5 and Observation 1.7. An important class of actions ofMod(Σ) are its linear representations – i.e.
the group homomorphisms Mod(Σ) −→ GL= (ℂ). These may be seen as actions Mod(Σ)

�

ℂ= where
each 5 ∈ Mod(Σ) acts via some linear isomorphism ℂ= ∼−−→ ℂ=.

1.1 Representations

Here we collect a few fundamental examples of linear representations of Mod(Σ).

Observation 1.12. Recall �1 (Σ6,ℤ) � ℤ26, with standard basis given by [U1], [V1], . . . , [U6], [V6] ∈
�1 (Σ6,ℤ) for U1, . . . , U6, V1, . . . , V6 as in Figure 1.2. The Abelian group �1 (Σ6,ℤ) is endowed with a
natural ℤ-bilinear alternating form given by the algebraic intersection number [U] · [V] = ∑

G∈U∩V ind G –
where the index ind G = ±1 of an intersection point is given by Figure 1.3. In terms of the standard
basis of �1 (Σ6,ℤ), this form is given by

[U8] · [V 9 ] = X8 9 [U8] · [U 9 ] = 0 [V8] · [V 9 ] = 0 (1.1)

and thus coincides with the pullback of the standard ℤ-bilinear symplectic form in ℤ26.

Example 1.13 (Symplectic representation). Given 5 = [q] ∈ Mod(Σ6), we may consider the map
q∗ : �1 (Σ6,ℤ) −→ �1 (Σ6,ℤ) induced at the level of singular homology. By homotopy invariance, the
map q∗ is independent of the choice of representative q of 5 . By the functoriality of homology groups
we then get a ℤ-linear action Mod(Σ6)

�

�1 (Σ6,ℤ) � ℤ26 given by 5 · [U] = q∗ ( [U]) = [q(U)]. Since
pushforwards by orientation-preserving homeomorphisms preserve the indices of intersection points,
( 5 · [U]) · ( 5 · [V]) = [U] · [V] for all U, V ⊆ Σ6 and 5 ∈ Mod(Σ6). In light of (1.1), this implies Mod(Σ6)
acts on ℤ26 via symplectomorphisms. We thus obtain a group homomorphism k : Mod(Σ6) −→
Sp26 (ℤ) ⊆ GL26 (ℂ), known as the symplectic representation of Mod(Σ6).
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Figure 1.2: The curves U1, V1, . . . , U6, V6 ⊆ Σ6

that generate its first homology group.
Figure 1.3: The index of an intersection point
G ∈ U ∩ V.

The symplectic representation already allows us to compute some important examples of mapping
class groups: namely, that of the torus T 2 = Σ1 and the once-punctured torus Σ1,1.

Observation 1.14 (Alexander trick). The groupHomeo+ (D2,S1) of homeomorphisms of the unit disk
D2 ⊆ ℂ is contractible. In particular, Mod(D2) = 1. Indeed, for any q ∈ Homeo+ (D2,S1) the isotopy

qC : D2 −→ D2

I ↦−→
{
(1 − C)q(I/1 − C) if 0 ¶ |I | ¶ 1 − C

I otherwise

that “fixes the band {I ∈ D2 : |I | ¾ 1 − C} and does q inside the sub-disk {I ∈ D2 : |I | ¶ 1 − C}” joins
q = q0 and 1 = q1.

Observation 1.15. By the same token, Mod(D2 r {0}) = 1.

Observation 1.16 (Linearity of Mod(T 2)). The symplectic representation k : Mod(T 2) −→ Sp2 (ℤ) =
SL2 (ℤ) is a group isomorphism. In particular, Mod(T 2) � SL2 (ℤ). To see k is surjective, first observe
ℤ2 ⊆ ℝ2 is SL2 (ℤ)-invariant. Hence any matrix 6 ∈ SL2 (ℤ) descends to an orientation-preserving
homeomorphism q6 of the quotient T 2 = ℝ2/ℤ2, which satisfies k( [q6]) = 6. To see k is injective we

consider the curves U1 and V1 from Figure 1.2. Given 5 = [q] ∈ Mod(T 2) with k( 5 ) = 1, 5 ·
−−−→
[U1] =

−−−→
[U1]

and 5 ·
−−−→
[V1] =

−−−→
[V1], so we may choose a representative q of 5 fixing U1∪V1 pointwise. Such q determines

a homeomorphism q̃ of the surface T 2
U1V1
� D2 obtained by cutting T 2 along U1 and V1, as in Figure 1.4.

Now by the Alexander trick from Observation 1.14, q̃ must be isotopic to the identity. The isotopy
q̃ ' 1 ∈ Homeo+ (D2,S1) then descends to an isotopy q ' 1 ∈ Homeo+ (T 2), so 5 = 1 ∈ Mod(T 2) as
desired.

Figure 1.4: By cutting T 2 along U1 we obtain a cylinder, where V1 determines a yellow arc joining the
two boundary components. Now by cutting along this yellow arc we obtain a disk.

Observation 1.17. By the same token, Mod(Σ1,1) � SL2 (ℤ).

Remark. Despite the fact k : Mod(T 2) −→ SL2 (ℤ) is an isomorphism, the symplectic representation is
not injective for surfaces of genus 6 ¾ 2 – see [1, Section 6.5] for a description of its kernel. Korkmaz and
Bigelow-Budney [3, 4] showed there exist injective linear representations of Mod(Σ2), but the question
of linearity of Mod(Σ6) remains wide-open for 6 ¾ 3. Recently, Korkmaz [2, Theorem 3] established
the lower bound of 36 − 3 for the dimension of an injective representation of Mod(Σ6) in the 6 ¾ 3
case – if one such representation exists.

Another fundamental class of examples of representations are the so-called TQFT representations.
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De�nition 1.18. A cobordism between closed oriented surfaces Σ and Σ′ is a triple (,, q+, q−)
where , is a smooth oriented compact 3-manifold with m, = m+, q m−, , q+ : Σ ∼−−→ m+,
is an orientation preserving di�eomorphism and q− : Σ′ ∼−−→ m−, is an orientation-reversing
di�eomorphism. We may abuse the notation and denote , = (,, q+, q−).

De�nition 1.19. We denote by Cob+3 the category whose objects are (possibly disconnected)
closed oriented surfaces and whose morphisms Σ −→ Σ′ are di�eomorphism classes2 of cobor-
disms between Σ and Σ′, with composition given by

[,, q− , q+] ◦ [, ′, k− , k+] = [, ∪k−◦q−1
+
, ′, q− , k+]

for [,, q− , q+] : Σ −→ Σ′ and [, ′, k− , q+] : Σ′ −→ Σ′′. We endow Cob+3 with the monoidal
structure given by

Σ ⊗ Σ′ = Σ q Σ′ [,, q+, q−] ⊗ [, ′, k+, k−] = [, q, ′, q+ q k+, q− q k−] .

De�nition 1.20 (TQFT). A topological quantum �eld theory (abbreviated by TQFT ) is a functor
F : Cob+3 −→ Vect(ℂ) satisfying

F(∅) = ℂ F(Σ ⊗ Σ′) = F(Σ) ⊗ F(Σ′) F( [,] ⊗ [, ′]) = F( [,]) ⊗ F( [, ′]),

where Vect(ℂ) denotes the category of finite-dimensional complex vector spaces.

Observation 1.21. Given q ∈ Homeo+ (Σ6), we may consider the so-called mapping cylinder �q =

(Σ6 × [0, 1], q, 1), a cobordism between Σ6 and itself – where m+ (Σ6 × [0, 1]) = Σ6 × 0 and m− (Σ6 ×
[0, 1]) = Σ6 × 1. The di�eomorphism class of �q is independent of the choice of representative of
5 = [q] ∈ Mod(Σ6), so � 5 = [�q] : Σ6 −→ Σ6 is a well defined morphism in Cob+3 .

Example 1.22 (TQFT representations). It is clear that �1 is the identity morphism Σ6 −→ Σ6 in
Cob+3 . In addition, � 5 ·6 = � 5 ◦ �6 for all 5 , 6 ∈ Mod(Σ6) – see [5, Lemma 2.5]. Now given a TQFT
F : Cob+3 −→ Vect(ℂ), by functoriality we obtain a linear representation

dF : Mod(Σ6) −→ GL(F(Σ6))
5 ↦−→ F(� 5 ).

As simple as the construction in Example 1.22 is, in practice it is not that easy to come across
functors as the ones in Definition 1.20. This is because, in most interesting examples, we are required
to attach some extra data to our surfaces to get a well defined association Σ6 ↦−→ F(Σ6). Moreover,
the condition F( [,] ◦ [, ′]) = F( [,]) ◦ F( [, ′]) may only hold up to multiplication by scalars.

Hence constructing an actual functor typically requires extending Cob+3 and tweaking Vect(ℂ).
Such functors give rise to linear and projective representations of the extended mapping class groups
Mod(Σ6) ×ℤ. We refer the reader to [5, 6] for constructions of one such TQFT and its corresponding
representations: the so-called SU2 TQFT of level A, first introduced by Witten and Reshetikhin-Tuarev
[7, 8] in their foundational papers on quantum topology.

Besides Example 1.13 and Example 1.22, not a lot of other linear representations of Mod(Σ6) are
known. Indeed, the representation theory of mapping class groups remains a mystery at large. In
Chapter 4 we provide a brief overview of the field, as well as some recent developments. More specifi-
cally, we highlight Korkmaz’ [2] proof of the triviality of low-dimensional representations and comment
on his classification of 26-dimensional representations. To that end, in Chapter 2 and Chapter 3 we
survey the group structure of mapping class groups: its relations and known presentations.

2Here we only consider orientation-preserving di�eomorphisms i : , ∼−−→ , ′ that are compatible with the boundary
identifications in the sense that i (m±, ) = m±, ′ and k± = i ◦ q±.
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Chapter 2

Dehn Twists

With the goal of studying the linear representations of mapping class groups in mind, we now start
investigating the group structure ofMod(Σ). We begin by computing some fundamental examples and
then explore how we can use these examples to understand the structure of the mapping class groups
of other surfaces. Namely, we compute Mod(S1 × [0, 1]) � ℤ, and discuss how its generator gives rise
to a convenient generating set for Mod(Σ), known as the set of Dehn twists.

The idea here is to reproduce the proof of injectivity in Observation 1.16: by cutting along curves
and arcs, we can always decompose a surface into copies of D2 and D2 r {0}. Observation 1.14 and
Observation 1.15 then imply the triviality of mapping classes fixing such arcs and curves. Formally,
this translates to the following result.

Proposition 2.1 (Alexander method). Let U1, . . . , U= ⊆ Σ be essential simple closed curves or proper
arcs satisfying the following conditions.

(i) [U8] ≠ [U 9 ] for 8 ≠ 9 .

(ii) Each pair (U8 , U 9 ) crosses at most once.

(iii) Given distinct 8, 9 , : , at least one of U8 ∩ U 9 , U8 ∩ U: , U 9 ∩ U: is empty.

(iv) The surface obtained by cutting Σ along the U8 is a disjoint union of disks and once-punctured
disks.

Suppose 5 ∈ Mod(Σ) is such that 5 ·
−−−→
[U8] =

−−−→
[U8] for all 8. Then 5 = 1 ∈ Mod(Σ).

See [1, Proposition 2.8] for a proof of Proposition 2.1. We now state some fundamental applications
of the Alexander method.

Example 2.2. The mapping class group Mod(S1 × [0, 1]) is freely generated by 5 = [q], where

q : S1 × [0, 1] ∼−−→ S1 × [0, 1]
(42c8C , B) ↦−→ (42c8 (C−B) , B)

is the map illustrated in Figure 2.1. In particular, Mod(S1 × [0, 1]) � ℤ.

Example 2.3. The mapping class group Mod(D2 r {−1/2, 1/2}) of the twice punctured unit disk in ℂ is
freely generated by 5 = [q], where

q : D2 r {−1/2, 1/2} ∼−−→ D2 r {−1/2, 1/2}
I ↦−→ −I

is the map from Figure 2.2. In particular, Mod(D2 r {−1/2, 1/2}) � ℤ.

7
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Figure 2.1: The generator 5 of Mod(S1 ×
[0, 1]) � ℤ takes the yellow arc on the left-hand
side to the arc on the right-hand side that winds
about the curve U.

Figure 2.2: The generator 5 of Mod(D2 r
{−1/2, 1/2) � ℤ corresponds to the clockwise rota-
tion by c about the origin.

Let Σ be an orientable surface, possibly with punctures and non-empty boundary. Given some
closed U ⊆ Σ, we may envision doing something similar to Example 2.2 in Σ by looking at annular
neighborhoods of U. These are precisely the Dehn twists, illustrated in Figure 2.3 in the case of the
bitorus Σ2.

De�nition 2.4. Given a simple closed curve U ⊆ Σ, fix a closed annular neighborhood � ⊆ Σ

of U – i.e. � � S1 × [0, 1]. Let 5 ∈ Mod(�) � Mod(S1 × [0, 1]) � ℤ be the generator from
Example 2.2. The Dehn twist gU ∈ Mod(Σ) about U is defined as the image of 5 under the
inclusion homomorphism Mod(�) −→ Mod(Σ).

Figure 2.3: The Dehn twist about the curve U takes the peanut-shaped curve on the left-hand side to
the yellow curve on the right-hand side.

Similarly, using the description of the mapping class group of the twice-puncture disk derived
in Example 2.3, the generator of Mod(D2 r {−1/2, 1/2}) gives rise the so-called half-twists. These are
examples of mapping classes that permute the punctures of Σ.

De�nition 2.5. Given an arc U ⊆ Σ joining two punctures in the interior of Σ, fix a closed
neighborhood � ⊆ Σ of U with � � D2r{−1/2, 1/2}. Let 5 ∈ Mod(�) � Mod(D2r{−1/2, 1/2}) � ℤ

be the generator from Example 2.3. The half-twist ℎU ∈ Mod(Σ) about U is defined as the image
of 5 under the inclusion homomorphism Mod(�) −→ Mod(Σ).

We can use the Alexander method to describe the kernel of capping and cutting morphisms in
terms of Dehn twists.

Observation 2.6 (Capping exact sequence). Let X ⊆ mΣ be a boundary component of Σ and cap :
Mod(Σ) −→ Mod(Σ ∪X (D2 r {0})) be the corresponding the capping homomorphism from Exam-
ple 1.10. There is an exact sequence

1 〈gX〉 Mod(Σ) Mod(Σ ∪X (D2 r {0}), 0) 1,
cap

known as the capping exact sequence – see [1, Proposition 3.19] for a proof.

Observation 2.7. Let U ⊆ Σ be a simple closed curve and cut : Mod(Σ)−−→[U] −→ Mod(Σ r U) be the
cutting homomorphism from Example 1.11. Then ker cut = 〈gU〉 � ℤ.
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It is also interesting to study how the geometry of two curves a�ects the relationship between their
corresponding Dehn twists. For instance, by investigating the geometric intersection number

#(U ∩ V) = min {|U′ ∩ V′ | : [U′] = [U] and [V′] = [V]}

we can distinguish between powers of Dehn twists [1, Proposition 3.2].

Proposition 2.8. Let U ⊆ Σ be a simple closed curve and )U be a representative of gU ∈ Mod(Σ).
Then #() :

U (V) ∩ V) = |: | ·#(U∩ V)2 for any : ∈ ℤ. In particular, if U is nontrivial then gU has in�nite
order.

Observation 2.9. Given U, V ⊆ Σ, gU = gV ⇐⇒ [U] = [V]. Indeed, if U and V are non-isotopic, we
can find W with #(W ∩ U) > 0 and #(W ∩ V) = 0. It thus follows from Proposition 2.8 that #()U (W) ∩ W) >
#()V (W) ∩ W), so gU ≠ gV .

Many other relations between Dehn twists can derived be in a geometric fashion too.

Observation 2.10. Given 5 = [q] ∈ Mod(Σ), gq (U) = 5 gU 5 −1.

Observation 2.11 (Disjointness relations). Given 5 ∈ Mod(Σ), [ 5 , gU] = 1 ⇐⇒ 5 · [U] = [U]. In
particular, [gU, gV] = 1 for U and V disjoint, for we can choose a representative of gV whose support is
disjoint from U.

Observation 2.12. If U, V ⊆ Σ are both nonseparating then gU, gV ∈ Mod(Σ) are conjugate. Indeed,
by the change of coordinates principle we can find 5 ∈ Mod(Σ) with 5 · [U] = [V] and then apply
Observation 2.10.

Observation 2.13 (Braid relations). Given U, V ⊆ Σ with #(U ∩ V) = 1, it is not hard to check that
gVgU · [V] = [U]. From Observation 2.10 we then get (gUgV)gU (gUgV)−1 = gV, from which follows the
braid relation

gUgVgU = gVgUgV .

A perhaps less obvious fact about Dehn twists is the following.

Theorem 2.14. Let Σ1
6,A be the orientable surface of genus 6 ¾ 1 with A punctures and 1 boundary

components. Then the pure mapping class group PMod(Σ1
6,A ) is generated by �nitely many Dehn twists

about nonseparating curves or boundary components.

The proof of Theorem 2.14 is simple in nature: we proceed by induction in 6, 1 and A. On the other
hand, the induction steps require two ingredients we have not encountered so far, namely the Birman
exact sequence and the modi�ed graph of curves. We now provide a concise account of these ingredients.

2.1 The Birman Exact Sequence

Having the proof of Theorem 2.14 in mind, it is interesting to consider the relationship between the
mapping class group of Σ1

6,A and that of Σ1
6,A+1 = Σ1

6,A r {G} for some G in the interior (Σ1
6,A )° of Σ1

6,A .
Indeed, this will later allow us to establish the induction step on the number of punctures A.

Given an orientable surface Σ and G1, . . . , G= ∈ Σ°, denote by Mod(Σ r {G1, . . . , G=}){G1 ,...,G= } ⊆
Mod(Σ r {G1, . . . , G=}) the subgroup of mapping classes 5 that permute G1, . . . , G= – i.e. 5 · G8 = Gf (8)
for some permutation f ∈ (=. We certainly have a surjective homomorphism

forget : Mod(Σ r {G1, . . . , G=}){G1 ,...,G= } −→ Mod(Σ)
[q] ↦−→ [q̃]

which “forgets the additional punctures G1, . . . , G= of Σ r {G1, . . . , G=},” but what is its kernel?
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To answer this question, we consider the configuration space � (Σ, =) = �ord (Σ, =)/(= of = (unordered)
points in the interior of Σ – where �ord (Σ, =) = {(G1, . . . , G=) ∈ (Σ°)= : G8 ≠ G 9 for 8 ≠ 9}. Denote
Homeo+ (Σ, mΣ)G1 ,...,G= = {q ∈ Homeo+ (Σ, mΣ) : q(G8) = G8}. From the fibration1

Homeo+ (Σ, mΣ)G1 ,...,G= ↩−→ Homeo+ (Σ, mΣ) −� � (Σ, =)
q ↦−→ [q(G1), . . . , q(G=)]

and its long exact sequence in homotopy we then obtain the following fundamental result.

Theorem 2.15 (Birman exact sequence). Suppose c1 (Homeo+ (Σ, mΣ), 1) = 1. Then there is an
exact sequence

1 c1 (� (Σ, =), [G1, . . . , G=]) Mod(Σ r {G1, . . . , G=}){G1 ,...,G= } Mod(Σ) 1.
push forget

Remark. Notice that � (Σ, 1) = Σ° ' Σ. Hence for = = 1 Theorem 2.15 gives us a sequence

1 c1 (Σ, G) Mod(Σ r {G}, G) Mod(Σ) 1.
push forget

Wemay regard a simple loop U : S1 −→ � (Σ, =) based at [G1, . . . , G=] as = disjoint curves U1, . . . , U= :
[0, 1] −→ Σ with U8 (0) = G8 and U8 (1) = Gf (8) for some f ∈ (=. The element push( [U]) ∈ Mod(Σ)
can then be seen as the mapping class that “pushes a neighborhood of Gf (8) towards G8 along the curve
U−1
8
,” as shown in Figure 2.4 for the case = = 1. Indeed, this goes to show push( [U]) can be descrived

as a product of Dehn twists.

Fundamental Observation 2.16. Using the notation of Figure 2.4, push( [U]) = gX1g
−1
X2

∈ Mod(Σ).

Figure 2.4: The inclusion push : c1 (Σ, G) −→ Mod(Σ) maps a simple loop U : S1 −→ Σ to the mapping
class supported at an annular neighborhood � of U. Inside this neighborhood, push( [U]) takes the arc
joining the boundary components X8 ⊆ m� on the left-hand side to the yellow arc on the right-hand
side.

2.2 The Modi�ed Graph of Curves

Having established Theorem 2.15, we now need to address the induction step in the genus 6 of Σ1
6,A .

Our strategy is to apply the following lemma from geometric group theory.

Lemma 2.17. Let � be a group and Γ be a connected graph with �

�

Γ via graph automorphisms.
Suppose that � acts transitively on both + (Γ) and {(E, F) ∈ + (Γ)2 : E — F in Γ}. If E, F ∈ + (Γ) are
connected by an edge and 6 ∈ � is such that 6 · F = E then � is generated by 6 and the stabilizer �E .

We are interested, of course, in the group � = PMod(Σ1
6,A ). As for the the role of Γ, we consider

the following graph.

1See [9, Chapter 4] for a reference.
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De�nition 2.18. The modi�ed graph of nonseparating curves N̂(Σ) of a surface Σ is the graph
whose vertices are (unoriented) isotopy classes of nonseparating simple closed curves in Σ and

[U] — [V] in N̂(Σ) ⇐⇒ #(U ∩ V) = 1,

where #(U ∩ V) is the geometric intersection number of U and V.

It is clear from the change of coordinates principle andObservation 1.3 that the actions ofMod(Σ1
6,A )

on + (N̂(Σ1
6,A )) and {([U], [V]) ∈ + (N̂(Σ1

6,A ))2 : #(U ∩ V) = 1} are both transitive. But why should
N̂(Σ1

6,A ) be connected? Historically, the modified graph of nonseparating curves first arose as a modi-
�ed version of another graph, known as the graph of of curves.

De�nition 2.19. Given a surface Σ, the graph of curves C(Σ) of Σ is the graph whose vertices
are (unoriented) isotopy classes of essential simple closed curves in Σ and

[U] — [V] in C(Σ) ⇐⇒ #(U ∩ V) = 0.

The graph of nonseparating curves N(Σ) is the subgraph of C(Σ) whose vertices consist of non-
separating curves.

Lickorish [10] essentially showed that, apart from a small number of sporadic cases, C(Σ6,A ) is
connected.

Theorem 2.20. If Σ6,A is not one Σ0 = S2, Σ0,1, . . . , Σ0,4, Σ1 = T 2 and Σ1,1 then C(Σ6,A ) is con-
nected.

In other words, given simple closed curves U, V ⊆ Σ6,A , we can find closed U = U1, U2, . . . , U= = V

in Σ6,A with U8 disjoint from U8+1. Now if U and V are nonseparating, by inductively adjusting this
sequence of curves we obtain the following corollary.

Corollary 2.21. If 6 ¾ 2 then bothN(Σ6,A ) and N̂(Σ6,A ) are connected.

See [1, Section 4.1] for a proof of Corollary 2.21. We are now ready to show Theorem 2.14.

Proof of Theorem 2.14. Let Σ1
6,A be the orientable surface of genus 6 ¾ 1with A punctures and 1 boundary

components. We want to establish that PMod(Σ1
6,A ) is generated by a finite number of Dehn twists

about nonseparating simple closed curves or boundary components. As promised, we proceed by
triple induction on A, 6 and 1.

For the base case, it is clear fromObservation 1.16 andObservation 1.17 thatMod(T 2) � Mod(Σ1,1) �
SL2 (ℤ) are generated by the Dehn twists about the curves U and V from Figure 2.5, each corresponding
to one of the standard generators(

1 1
0 1

) (
1 0
−1 1

)
of SL2 (ℤ).

Figure 2.5: The curves U and V whose Dehn twists generate Mod(T 2) and Mod(Σ1,1).
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Now suppose PMod(Σ6,A ) is finitely-generated by twists about nonseparating curves for 6 ¾ 2 or
6 = 1 and A > 1. In both case, j(Σ6,A ) = 2 − 26 − A < 0 and thus c1 (Homeo+ (Σ6,A )) = 1 – see [1,
Theorem 1.14]. The Birman exact sequence from Theorem 2.15 then gives us

1 c1 (Σ6,A , G) PMod(Σ6,A+1) PMod(Σ6,A ) 1,
push forget

where Σ6,A+1 = Σ6,A r {G}. Since 6 ¾ 1, c1 (Σ6,A , G) is generated by finitely many nonseparating loops.
We have seen in Observation 2.16 that push : c1 (Σ6,A , G) −→ Mod(Σ6,A+1, G) takes nonseparating
simple loops to products of twists about nonseparating simple curves. Furthermore, we may lift the
generators of PMod(Σ6,A ) to Dehn twists about the corresponding curves in Σ6,A+1. This goes to
show that PMod(Σ6,A+1) is also generated by finitely many twists about simple curves, concluding the
induction step on A.

As for the induction step on 6, fix 6 ¾ 1 and suppose that, for each A ¾ 0, PMod(Σ6,A ) is finitely
generated by twists about nonseparating curves or boundary components. Let us show that the same
holds for Mod(Σ6+1). To that end, we consider the action Mod(Σ6+1)

�

N̂(Σ6+1). Since 6 + 1 ¾ 2,
N̂(Σ6+1) is connected and the conditions of Lemma 2.17 are met. Now recall from Observation 2.13
that, given nonseparating U, V ⊆ Σ6+1 crossing once, gVgU · [V] = [U]. It thus follows from Lemma 2.17
that Mod(Σ6+1) is generated by gVgU and Mod(Σ6+1)[U] = { 5 ∈ Mod(Σ6+1) : 5 · [U] = [U]}.

In turn, Mod(Σ6+1)[U] has its index 2 subgroup

Mod(Σ6+1)−−→[U] = { 5 ∈ Mod(Σ6+1) : 5 ·
−−→
[U] =

−−→
[U]}

of mapping classes fixing any given choice of orientation of U. One can check that gVg2UgV ∈ Mod(Σ6+1)[U]
inverts the orientation of U and is thus a representative of the nontrivialMod(Σ6+1)−−→[U] -coset inMod(Σ6+1)[U] .
In particular, Mod(Σ6+1) is generated by Mod(Σ6+1)−−→[U] , gVgU and gVg

2
UgV .

We now claim Mod(Σ6+1)−−→[U] is generated by finitely many twists about nonseparating curves. First
observe that Σ6+1 r U � Σ6,2, as shown in Figure 2.6. Observation 2.7 then gives us an exact sequence

1 〈gU〉 Mod(Σ6+1)−−→[U] PMod(Σ6,2) 1.cut (2.1)

But by the induction hypothesis, PMod(Σ6,2) is finitely-generated by twists about nonseparating simple
closed curves. As before, these generators may be lifted to appropriate twists inMod(Σ6+1)−−→[U] . Now by
(2.1) we get that Mod(Σ6+1)−−→[U] is finitely generated by twists about nonseparating curves, as desired.
This concludes the induction step in 6.

Figure 2.6: The homeomorphism Σ6+1rU � Σ6,2: removing the curve U has the same e�ect as cutting
along U and then capping the two resulting boundary components with once-punctured disks, which
gives us Σ6,2.

Finally, we handle the induction in 1. The boundaryless case 1 = 0 was already dealt with be-
fore. Now suppose PMod(Σ1

6,B) is finitely generated by twists about simple closed curves or boundary
components for all 6 and B. Fix some boundary component X ⊆ mΣ1+1

6,A . From the homeomorphism
Σ1
6,A+1 � Σ1+1

6,A ∪X (D2r{0}) and the capping exact sequence from Observation 2.6 we obtain a sequence

1 〈gX〉 PMod(Σ1+1
6,A ) PMod(Σ1

6,A+1) 1.
cap

Now by induction hypothesis we may once again lift the generators of PMod(Σ1
6,A+1) to Dehn twists

about the corresponding curves in Σ1+1
6,A and add gX to the generating set, concluding the induction in

1 ¾ 0. We are done. �
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There are many possible improvements to this last result. For instance, in [1, Section 4.4] Farb-
Margalit exhibit an explicit set of generators of Mod(Σ1

6 ) by adapting the induction steps in the proof
of Theorem 2.14. These are known as the Lickorish generators.

Theorem 2.22 (Lickorish generators). If 6 ¾ 1 then Mod(Σ1
6 ) is generated by the Dehn twists

about the curves U1, . . . , U6, V1, . . . , V6, W1, . . . , W6−1, [1, . . . , [1−1 as in Figure 2.7

In the boundaryless case 1 = 0, we can write gU3 , . . . , gU6
∈ Mod(Σ6) as products of the twists about

the remaining curves, from which we get the so-called Humphreys generators.

Corollary 2.23 (Humphreys generators). If 6 ¾ 2 then Mod(Σ6) is generated by the Dehn twists
about the curves U0, . . . , U26 as in Figure 2.8.

Figure 2.7: The curves from Lickorish genera-
tors of Mod(Σ1

6 ).
Figure 2.8: The curves from Humphreys gener-
ators of Mod(Σ6).



14 Chapter 2. Dehn Twists



Chapter 3

Relations Between Twists

Having found a convenient set of generators for Mod(Σ6), it is now natural to ask what the relations
between such generators are. In this chapter, we highlight some additional relations between Dehn
twists and the geometric intuition behind them, culminating in the statement of a presentation for
Mod(Σ6) whose relations can be entirely explained in terms of the geometry of curves in Σ6 – see
Theorem 3.15.

Fundamental Observation 3.1 (Lantern relation). Let Σ4
0 be the surface of genus 0 with 4 boundary

components and U, V, W, X1, . . . , X4 ⊆ Σ4
0 be as in Figure 3.1. Consider the surfaces Σ3

0 = Σ4
0 ∪X1 D

2 and
Σ3
0,1 = Σ4

0 ∪X1 (D2 r {0}), as well as the map push : c1 (Σ3
0 , 0) −→ Mod(Σ3

0,1). Let [1, [2, [3 : S
1 −→ Σ3

0

be the loops from Figure 3.2, so that [[1] · [[2] = [[3] in c1 (Σ3
0, 0). From Observation 2.16 we obtain

(gX2g−1U ) (gX3g−1W ) = push( [[1]) · push( [[2]) = push( [[3]) = gVg
−1
X4

∈ Mod(Σ3
0,1).

Using the capping exact sequence fromObservation 2.6, we can then see gX2g
−1
U gX3g

−1
W , gVg

−1
X4

∈ Mod(Σ4
0)

di�er by a power of gX1 . In fact, one can show (gX2g−1U gX3g
−1
W ) (gVg−1X4 )

−1 = g−1
X1

∈ Mod(Σ4
0). Now the

disjointness relations [gX8 , gU] = [gX8 , gV] = [gX8 , gW] = 1 give us the lantern relation (3.1) in Mod(Σ4
0).

gUgVgW = gX1gX2gX3gX4 (3.1)

Figure 3.1: Two views of Σ4
0 : on the left-hand side

we see the lantern-like surface we get by subtract-
ing 4 disjoint open disks from S2, and on the right-
hand side we see the disk with three open disks sub-
tracted from its interior.

Figure 3.2: The curves [1, [2, [3 ⊆ Σ3
0 from

the proof of the lantern relation.

We may exploit di�erent embeddings Σ4
0 ↩−→ Σ and their corresponding inclusion homomor-

phisms Mod(Σ4
0) −→ Mod(Σ) to obtain interesting relations between the corresponding Dehn twists

in Mod(Σ). For example, the lantern relation can be used to compute Mod(Σ1
6 )ab for 6 ¾ 3.

Proposition 3.2. The Abelianization Mod(Σ1
6 )ab = Mod(Σ1

6 )/[Mod(Σ6 ) ,Mod(Σ6 ) ] is cyclic. Moreover,
if 6 ¾ 3 then Mod(Σ1

6 )ab = 0. In other words, Mod(Σ6) is a perfect group for 6 ¾ 3.

15
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Proof. By Theorem 2.22,Mod(Σ1
6 )ab is generated by the image of the Lickorish generators, which are all

conjugate and thus represent the same class in the Abelianization. In fact, any nonseparating U ⊆ Σ1
6

is conjugate to the Lickorish generators too, so Mod(Σ1
6 )ab = 〈[U]〉.

Now for 6 ¾ 3we can embed Σ4
0 in Σ1

6 in such a way that all the corresponding curves U, V, W, X1, . . . , X4 ⊆
Σ1
6 are nonseparating, as shown in Figure 3.3. The lantern relation (3.1) then becomes

3 · [gU] = [gU] + [gV] + [gW] = [gX1 ] + [gX2 ] + [gX3 ] + [gX4 ] = 4 · [gU]

in Mod(Σ1
6 )ab. In other words, [gU] = 0 and thus Mod(Σ1

6 )ab = 0. �

Figure 3.3: The embedding of Σ4
0 in Σ1

6 for 6 ¾ 3.

To get extra relations we need to investigate certain branched covers Σ −→ D2 r {G1, . . . , GA }, as
well as the relationship between Mod(Σ) and Mod(D2 r {G1, . . . , GA }). This is what is known as the
Birman-Hilden theorem.

3.1 The Birman-Hilden Theorem

Let Σ1
0,A = D2 r {G1, . . . , GA } be the surface of genus 0 with A punctures and one boundary component.

We begin our investigation by providing an alternative description of its mapping class group. Namely,
we show that Mod(Σ1

0,A ) is the braid group on A strands.

De�nition 3.3. The braid group on = strands �= is the fundamental group c1 (� (D2, =), ∗) of the
configuration space � (D2, =) = �ord (D2 , =)/(= of = points in the interior of the disk. The elements
of �= are referred to as braids.

Example 3.4. Given 8 = 1, . . . , = − 1, we define f8 ∈ �= as in Figure 3.4.

Figure 3.4: The braid f8 .
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The third Reidemeister move translates to the so-called braid relations

f8f8+1f8 = f8+1f1f8

in �=, which motivates the name used in Observation 2.13. In his seminal paper on braid groups, Artin
[11] gave the following finite presentation of �=.

Theorem 3.5 (Artin).

�= =

〈
f1, . . . , f=−1 :

f8f8+1f8 = f8+1f8f8+1 for all 8,
f8f9 = f9f8 for 9 ≠ 8 + 1 and 9 ≠ 8 − 1

〉
.

As promised, we now show that �= coincides withMod(Σ1
0,=). Recall from Theorem 2.15 that there

is an exact sequence

1 �= Mod(Σ1
0,=) �����: 1

Mod(D2) 1,
push

for Homeo+ (D2,S1) is contractible by Observation 1.14. We thus obtain the following result.

Proposition 3.6. The map push : �= −→ Mod(Σ1
0,=) is a group isomorphism.

Observation 3.7. Using the capping exact se-
quence from Observation 2.6 and the Alexan-
der method, one can check that the center
/ (Mod(Σ1

0,=)) of Mod(Σ1
0,=) is freely generated

by the Dehn twist gX about the boundary X =

mΣ1
0,=. It is also not very di�cult to see that

push : �= −→ Mod(Σ1
0,=) takes f1 · · ·f=−1 to

the rotation by 2c/= as in Figure 3.5, which is an
=-th root of gX . Hence the center / (�=) is freely
generated by I = (f1 · · ·f=−1)=.

Figure 3.5: The clockwise rotation by 2c/= about
an axis centered around the punctures G1, . . . , G=
of Σ1

0,=.

To get from Σ1
0,= to surfaces of genus 6 > 0 we may consider the hyperelliptic involution ] : Σ6

∼−−→ Σ6,
which rotates Σ6 by c around some axis as in Figure 3.6. Given ℓ < 6 and 1 = 1, 2, we can also embed
Σ1
ℓ
in Σ6 in such way that ] restricts to an involution1 Σ1

ℓ
∼−−→ Σ1

ℓ
.

Figure 3.6: The hyperelliptic involution ].

It is clear from Figure 3.6 that the quotients Σ1
ℓ/] and Σ2

ℓ/] are both disks, with boundary correspond-
ing to the projection of the boundaries of Σ1

ℓ
and Σ2

ℓ
, respectively. Given 1 = 1, 2, the quotient map

Σ1
ℓ
−→ Σ1

ℓ/] � D2 is a double cover with 2ℓ + 1 branch points corresponding to the fixed points of ]. We
may thus regard Σ1

ℓ/] as the disk Σ1
0,2ℓ+1 with 2ℓ+ 1 punctures in its interior, as shown in Figure 3.7. We

also draw the curves U1, . . . , U2ℓ ⊆ Σ1
ℓ
of the Humphreys generators of Mod(Σ6). Since these curves

are invariant under the action of ], they descend to arcs Ū1, . . . , Ū2ℓ+1 ⊆ Σ1
0,2ℓ+1 joining the punctures

of the quotient surface.

1This involution does not fix mΣ1
ℓ
point-wise.
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Figure 3.7: The double branched covers given by ].

Observation 3.8. The map push : �2ℓ+1 −→ Mod(Σ1
0,2ℓ+1) takes f8 to the half-twist ℎ Ū8

about the arc
Ū8 ⊆ Σ1

0,2ℓ+1.

We now study the homeomorphisms of Σ1
ℓ
and Σ2

ℓ
that descend to the quotient surfaces and their

mapping classes, known as the symmetric mapping classes.

De�nition 3.9. Let ℓ ¾ 0 and 1 = 1, 2. The group of symmetric homeomorphisms of Σ1
ℓ
is

SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
) = {q ∈ Homeo+ (Σ1

ℓ
, mΣ1

ℓ
) : [q, ]] = 1}. The symmetric mapping class group of

Σ1
ℓ
is the subgroup SMod(Σ1

ℓ
) = {[q] ∈ Mod(Σ1

ℓ
) : q ∈ SHomeo+ (Σ1

ℓ
, mΣ1

ℓ
)}.

Fix 1 = 1 or 2. It follows from the universal property of quotients that any q ∈ SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
)

defines a homeomorphism q̄ : Σ1
0,2ℓ+1

∼−−→ Σ1
0,2ℓ+1. This yields a homomorphism of topological groups

SHomeo+ (Σ1
ℓ , mΣ

1
ℓ ) −→ Homeo+ (Σ1

0,2ℓ+1, mΣ
1
0,2ℓ+1)

q ↦−→ q̄,

which is surjective because any k ∈ Homeo+ (Σ1
0,2ℓ+1, mΣ

1
0,2ℓ+1) lifts to Σ1

ℓ
.

It is also not di�cult to see SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
) −→ Homeo+ (Σ1

0,2ℓ+1, mΣ
1
0,2ℓ+1) is injective: the only

candidates for elements of its kernel are 1 and ], but ] is not an element of SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
) since it

does not fix mΣ1
ℓ
point-wise. Now since we have a continuous bijective homomorphism we find

c0 (SHomeo+ (Σ1
ℓ , mΣ

1
ℓ )) � c0 (Homeo+ (Σ1

0,2ℓ+1, mΣ
1
0,2ℓ+1))

= Homeo+ (Σ1
0,2ℓ+1, mΣ

1
0,2ℓ+1)/'

= Mod(Σ1
0,2ℓ+1)

� �2ℓ+1 .

We would like to say c0 (SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
)) = SMod(Σ1

ℓ
), but a priori the story looks a little more

complicated: q, k ∈ SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
) define the same class in SMod(Σ1

ℓ
) if they are isotopic, but

they may not lie in same connected component of SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
) if they are not isotopic through

symmetric homeomorphisms. Birman-Hilden [12] showed that this is never the case.

Theorem 3.10 (Birman-Hilden). If q, k ∈ SHomeo+ (Σ1
ℓ
, mΣ1

ℓ
) are isotopic then q and k are

isotopic through symmetric homeomorphisms. In particular, there is an isomorphism

SMod(Σ1
ℓ ) ∼−−→ Mod(Σ0,2ℓ+1)
[q] ↦−→ [q̄] .

Observation 3.11. Using the notation of Figure 3.7, the Birman-Hilden isomorphism SMod(Σ1
ℓ
) ∼−−→

Mod(Σ0,26+1) takes gU8
to the half twist ℎ Ū8

∈ Mod(Σ0,26+1). This can be checked by looking at
]-invariant annular neighborhoods of the curves U8 – [1, Section 9.4].
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Fundamental Observation 3.12 (: -chain relations). The Birman-Hilden isomorphism SMod(Σ1
ℓ
) ∼−−→

Mod(Σ1
0,2ℓ+1) takes the twists gX ∈ SMod(Σ1

ℓ
) about the boundary X = mΣ1

ℓ
to g2

X̄
∈ Mod(Σ1

0,2ℓ+1). Sim-
ilarly, SMod(Σ2

ℓ
) ∼−−→ Mod(Σ0,2ℓ+2) takes gX1gX2 ∈ SMod(Σ2

ℓ
) to gX̄1 = gX̄2 . In light of Observation 3.8,

Observation 3.7 translates into the so-called : -chain relations in SMod(Σ1
ℓ
) ⊆ Mod(Σ6).

(f1 · · ·f:)2:+2 = I2 ∈ �:+1   (gU1 · · · gU:
)2:+2 = gX for : = 2ℓ even

(f1 · · ·f:):+1 = I ∈ �:+1   (gU1 · · · gU:
):+1 = gX1gX2 for : = 2ℓ + 1 odd

We may also exploit the quotient Σ6/] � S2 to obtain other relations. Since ] has 26 + 2 fixed points
in Σ6, we get branched double cover Σ6 −→ Σ0,26+2.

Theorem 3.13 (Birman-Hilden without boundary). If 6 ¾ 2 then we have an exact sequence

1 〈[]]〉 �Mod(Σ6 ) ( []]) Mod(Σ0,26+2) 1,

where �Mod(Σ6 ) ( []]) ⊆ Mod(Σ6) is the commutator subgroup of []] and the right map takes [q] ∈
�Mod(Σ6 ) ( []]) to [q̄] ∈ Mod(Σ0,26+2).

Fundamental Observation 3.14 (Hyperelliptic relations). Let U1, . . . , U26, X ⊆ Σ6 be as in Figure 3.8.
Then

[]] = gXgU26 · · · gU1gU1 · · · gU26gX . (3.2)

Indeed, �Mod(Σ6 ) ( []]) −→ Mod(Σ0,26+2) takes gXgU26 · · · gU1 to the rotation from Figure 3.9, while
gU1 · · · gU26gX is taken to its inverse. By Theorem 3.13,

gXgU26 · · · gU1gU1 · · · gU26gX ∈ ker(�Mod(Σ6 ) ( []]) −→ Mod(Σ0,26+2)) = 〈[]]〉 � ℤ/2.

One can then show gXgU26 · · · gU1gU1 · · · gU26gX inverts the orientation of U1, so gXgU26 · · · gU1gU1 · · · gU26gX ≠

1 and (3.2) follows. In particular, we obtain the so-called hyperelliptic relations (3.3) and (3.4) in
Mod(Σ6).

(gXgU26 · · · gU1gU1 · · · gU26gX)2 = 1 (3.3)

[gXgU26 · · · gU1gU1 · · · gU26gX , gX] = 1 (3.4)

Figure 3.8: The curves from the Humphreys
generators ofMod(Σ6) and the curve X from the
hyperelliptic relations.

Figure 3.9: The clockwise rotation by c/6 + 1

about an axis centered around the punctures of
Σ0,26+1.

3.2 Presentations of Mapping Class Groups

Having explored some of the relations in Mod(Σ), it is natural to ask if these relations are enough to
completely describe the structure of Mod(Σ). Di�erent presentations of mapping class groups are due
to the work of Birman-Hilden [12], Gervais [13] and many others. Wajnryb [14] derived a presentation
ofMod(Σ6) only using the relations discussed in Chapter 2 and Section 3.1. This is quite a satisfactory
result, for we have seen that all of these relations can be explained in terms of the topology of Σ6.
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Theorem 3.15 (Wajnryb). Suppose 6 ¾ 3. If U0, . . . , U6 are as in Figure 2.8 and 08 = gU8
∈

Mod(Σ6) are the Humphreys generators, then there is a presentation of Mod(Σ6) with generators
00, . . . 026 subject to the following relations.

(i) The disjointness relations [08 , 0 9 ] = 1 for U8 and U 9 disjoint.

(ii) The braid relations 080 908 = 0 9080 9 for U8 and U 9 crossing once.

(iii) The 3-chain relation (010203)4 = 0010, where

10 = (0403020101020304)00 (0403020101020304)−1.

(iv) The lantern relation 001211 = 01030513, where

11 = (04050304)−100 (04050304)
12 = (02030102)−111 (02030102)
12 = D11D

−1

D = (0605) (040302) (0605)−111 (0605)0−11 (040302)−1.

(v) The hyperelliptic relation [026 · · · 0101 · · · 026, 3] = 1, where 3 = =6 for =1 = 01, =2 = 10 and

=8+2 = F8=8F
−1
8

F8 = (028+4028+3028+2=8+1) (028+10228028+1) (028+3028+2028+4028+3) (=1028+2028+1028).

Remark. The mapping classes 10, . . . , 13, 3 in the statement of Theorem 3.15 correspond to the Dehn
twists about the curves V0, . . . , V3, X ⊆ Σ6 highlighted in Figure 3.10, so Wajnryb’s presentation is not
as intractable as it might look at first glance.

Figure 3.10: The curves from Wajnryb’s presentation.

Di�erent presentations can be used to compute the Abelianization ofMod(Σ6) for 6 ¶ 2. Indeed, if
� = 〈61, . . . , 6= : '〉 is a finitely-presented group, then �ab = 〈61, . . . , 6= : ', [68 , 6 9 ] for all 8, 9〉. Using
this approach, Farb-Margalit [1, Section 5.1.3] show the Abelianization is given by

6 Σ6 Mod(Σ6)ab

0 S2 0
1 T 2 ℤ/12
2 Σ2 ℤ/10

for closed surfaces of small genus. In [15] Korkmaz-McCarthy showed that even though Mod(Σ1
2 ) is

not perfect, its commutator subgroup is. In addition, they also show [Mod(Σ1
6 ),Mod(Σ1

6 )] is normally
generated by a single mapping class.

Proposition 3.16. The commutator subgroup Mod(Σ1
2 )

′ = [Mod(Σ1
2 ),Mod(Σ1

2 )] is perfect – i.e.
Mod(Σ1

2 )
(2) = [Mod(Σ1

2 )
′,Mod(Σ1

2 )
′] is the whole of Mod(Σ1

2 )
′.
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Proposition 3.17. If 6 ¾ 2 and U, V ⊆ Σ6 are simple closed crossing only once, then Mod(Σ6)′ is
normally generated by gUg−1V

– i.e. if gUg−1V
∈ # ⊳Mod(Σ6)′ then Mod(Σ6)′ ⊆ # .

The di�erent presentations of Mod(Σ6) may also be used to study its representations. Indeed, in
light of Theorem 3.15, a representation d : Mod(Σ6) −→ GL= (ℂ) is nothing other than a choice of
26 + 1 matrices d(gU0 ), . . . , d(gU26 ) ∈ GL= (ℂ) satisfying the relations (i) to (v) as above. In the next
chapter, we will discuss how these relations may be used to derive obstructions to the existence of
nontrivial representations of certain dimensions.
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Chapter 4

Low-Dimensional Representations

Having built a solid understanding of the combinatorics of Dehn twists, we are now ready to attack the
problem of classifying the representations of Mod(Σ6) of su�ciently small dimension. As promised,
our strategy is to make use of the geometrically-motivated relations derived in Chapter 2 and Chapter 3.

Historically, these relations have been exploited by Funar [16], Franks-Handel [17] and others to
establish the triviality of low-dimensional representations, culminating in Korkmaz’ [2] recent classifi-
cation of representations of dimension = ¶ 26 for 6 ¾ 3. The goal of this chapter is to provide a concise
account of Korkmaz’ results.

Theorem 4.1 (Korkmaz). Let Σ1
6 be the compact surface of genus 6 ¾ 1 with 1 boundary components

and d : Mod(Σ1
6 ) −→ GL= (ℂ) be a linear representation with = < 26. Then the image of d is Abelian.

In particular, if 6 ¾ 3 then d is trivial.

Like some of the results we have encountered so far, the proof of Theorem 4.1 is elementary in
nature: we proceed by induction on 6 and tedious case analysis. We begin by the base case 6 = 2.

Proposition 4.2. Given d : Mod(Σ1
2 ) −→ GL= (ℂ) with = ¶ 3, the image of d is Abelian.

Sketch of proof. Given U ⊆ Σ1
2 , let !U = d(gU) and denote by �U=_ = {E ∈ ℂ= : !UE = _E} its

eigenspaces. Let U1, U2, V1, V2, W, [1, . . . , [1−1 ⊆ Σ1
2 be the curves of the Lickorish generators from

Theorem 2.22, as shown in Figure 4.1.
If = = 1 then d(Mod(Σ1

2 )) ⊆ GL1 (ℂ) = ℂ× is Abelian. Now if = = 2 or 3, by Proposition 3.17 it
su�ces to show !U1 = !V1 , so that gU1g

−1
V1

∈ ker d and thus Mod(Σ1
2 )

′ ⊆ ker d – i.e. d(Mod(Σ1
2 )) is

Abelian. Given the braid relation

!U1!V1!U1 = !V1!U1!V1 , (4.1)

this amounts to showing !U1 and !V1 commute.

Figure 4.1: The Lickorish generators for 6 = 2.

23
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To that end, we exhaustively analyze all of the possible Jordan forms(
_ 0
0 _

)
(1)

(
_ 0
0 `

)
(2)

(
_ 1
0 _

)
(3)

©«
_ 0 0
0 _ 0
0 0 _

ª®¬ (4) ©«
_ 0 0
0 ` 0
0 0 a

ª®¬ (5) ©«
_ 1 0
0 _ 1
0 0 _

ª®¬ (6)

©«
_ 0 0
0 ` 1
0 0 `

ª®¬ (7) ©«
_ 0 0
0 _ 1
0 0 _

ª®¬ (8) ©«
_ 0 0
0 _ 0
0 0 `

ª®¬ (9)

of !U2 – where _, `, a ∈ ℂ× are all distinct. By changing basis we may assume without loss of generality
that the matrix !U2 is exactly its Jordan form, so that �U2=_ =

⊕
8¶dim�U2

ℂ48 .

For cases (1) to (6), we use the change of coordinates principle and di�erent relations to show !U1

and !V1 lie inside some Abelian subgroup of GL= (ℂ).

(1) & (4) By the change of coordinates principle, both !U1 and !V1 are conjugate to !U2 = _. But
the only matrix conjugate to _ is _ itself. Hence !U1 = !V1 = _ ∈ ℂ× .

(2) & (5) Since U2 is disjoint from both U1 and V1, it follows from the disjointness relations [gU1 , gU2 ] =
[gV1 , gU2 ] = 1 that !U1 and !V1 preserve the eigenspaces of !U2 , which are all 1-dimensional.
Hence !U1 and !V1 lie inside the subgroup of diagonal matrices – an Abelian subgroup of
GL= (ℂ).

(3) & (6) As before, it follows from the disjointness relations that �U2=_ = ker(!U2−_) and ker(!U2−
_)2 are invariant under both !U1 and !V1 . This implies !U1 and !V1 are upper triangular
matrices with _ along their diagonals. Any such pair of matrices satisfying the braid
relation (4.1) commute.

Similarly, in case (7) we use the braid relation and the disjointness relations to show !U1 and !V1

commute – see [2, Proposition 5.1] for a full proof. Cases (8) and (9) require some extra thought. We
consider the curve V2. In these cases, the eigenspace �U2=_ is 2-dimensional. Since !U2 and !V2 are
conjugate, �V2=_ is also 2-dimensional – indeed, conjugate operators have the same Jordan form. Now
either �U2=_ = �V2=_ or �U2=_ ≠ �V2=_. We begin by the first case.

We claim that if �U2=_ = �V2=_ then �U2=_ is Mod(Σ1
2 )-invariant. Indeed, by Observation 1.3 we

can always find 5 , 6, ℎ8 ∈ Mod(Σ1
2 ) with

5 · [U2] = [U1] 6 · [U2] = [V1] ℎ8 · [U2] = [U2]
5 · [V2] = [V1] 6 · [V2] = [W] ℎ8 · [V2] = [[8] .

In particular,

5 gU2 5
−1 = gU1 6gU26

−1 = gV1 ℎ8gU2ℎ
−1
8 = gU2

5 gV2 5
−1 = gV1 6gV26

−1 = gW ℎ8gV2ℎ
−1
8 = g[8 .

and thus

�U1=_ = d( 5 )�U2=_ = d( 5 )�V2=_ = �V1=_

�V1=_ = d(6)�U2=_ = d(6)�V2=_ = �W=_

�[8=_ = d(ℎ8)�U2=_ = d(ℎ8)�V2=_ = �V2=_.

In other words, �U1=_ = �U2=_ = �V1=_ = �V2=_ = �W=_ = �[1=_ = · · · = �[1−1=_ is invariant under the
action of all Lickorish generators.
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Hence d restricts to a subrepresentation d̄ : Mod(Σ1
2 ) −→ GL(�U2=_) = GL2 (ℂ) – recall �U2=_ =

ℂ41 ⊕ ℂ42. By case (2), d̄( 5 ) = 1 for all 5 ∈ Mod(Σ1
2 )

′, given that d̄(Mod(Σ1
2 )) is Abelian. Thus

d(Mod(Σ1
2 )

′) ⊆ ©«
1 0 ∗
0 1 ∗
0 0 ∗

ª®¬
lies inside the group of upper triangular matrices, a solvable subgroup of GL3 (ℂ). Now by Proposi-
tion 3.16 we get d(Mod(Σ1

2 )
′) = 1: any homomorphism from a perfect group to a solvable group is

trivial.
Finally, if �U2=_ ≠ �V2=_ and the Jordan form of !U2 is given by (8) then the disjointness relations

[gU2 , gU1 ] = [gU2 , gV1 ] = [gV2 , gU1 ] = [gV2 , gV1 ] = 1 implies that !U1 and !V1 preserve the eigenspaces of
both !U2 and !V2 , so

0 ( �U2=_ ∩ �V2=_ ( �U2=_ ( +

is a flag of subspaces invariant under !U1 and !V1 . In this case we can find a basis for ℂ3 with
respect to which the matrices of !U1 and !V1 are both upper triangular with _ along the diagonal: take
E1, E2, E3 ∈ ℂ3 with E1 ∈ �U2=_ ∩ �V2=_ and E2 ∈ +!U2

. Any such pair of matrices satisfying the braid
relation (4.1) commute.

Similarly, if !U2 has Jordan form (9) and �U2=_ ≠ �V2=_ we use (4.1) to conclude !U1 and !V1

commute – again, see [2, Proposition 5.1]. We are done. �

We are now ready to establish the triviality of low-dimensional representations.

Proof of Theorem 4.1. Let 6 ¾ 1, 1 ¾ 0, and fix d : Mod(Σ1
6 ) −→ GL= (ℂ) with = < 26. We want to show

d(Mod(Σ1
6 )) is Abelian. As promised, we proceed by induction on 6. The base case 6 = 1 is again

clear from the fact = = 1 and GL1 (ℂ) = ℂ× . The case 6 = 2 was also established in Proposition 4.2.
Now suppose 6 ¾ 3 and every <-dimensional representation of Σ1′

6−1 has Abelian image for < <

2(6 − 1). Let U1, . . . , U6, V1, . . . , V6, W1, . . . , W6−1, [1, . . . , [1−1 ⊆ Σ1
6 be the curves from the Lickorish

generators ofMod(Σ1
6 ), as in Figure 2.7. Once again, let !U = d(gU) and denote by �U=_ the eigenspace

of !U associated to _ ∈ ℂ. Let Σ � Σ1
6−1 be the closed subsurface highlighted in Figure 4.2.

Figure 4.2: The subsurface Σ ⊆ Σ1
6 .

We claim that it su�ces to find a <-dimensionalMod(Σ)-invariant1 subspace, ⊆ ℂ= with 2 ¶ < ¶
= − 2. Indeed, in this case < < 2(6 − 1) and dim ℂ=/, = = − < < 2(6 − 1). Thus both representations

d1 : Mod(Σ) −→ GL(,) � GL< (ℂ) d2 : Mod(Σ) −→ GL(ℂ
=/,) � GL=−< (ℂ)

fall into the induction hypothesis – i.e. d8 (Mod(Σ)) is Abelian. In particular, d8 (Mod(Σ)′) = 1 and we
can find some basis for ℂ= with respect to which

d( 5 ) =
(
1< ∗
0 1=−<

)
for all 5 ∈ Mod(Σ)′ – where 1: denotes the : × : identity matrix. Since the group of upper triangular
matrices is solvable, it follows from Proposition 3.16 that d annihilates all ofMod(Σ)′ and, in particular,

1Here we view Mod(Σ) as a subgroup of Mod(Σ1
6 ) via the inclusion homomorphism Mod(Σ) −→ Mod(Σ1

6 ) from Exam-
ple 1.9, which can be shown to be injective in this particular case.
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gU1g
−1
V1

∈ ker d. Now recall from Proposition 3.17 that Mod(Σ1
6 )′ is normally generated by gU1g

−1
V1
, from

which we conclude d(Mod(Σ1
6 )′) = 1, as desired.

As before, we exhaustively analyze all possible Jordan forms of !U6
. First, consider the case where

we can find eigenvalues _1, . . . , _: of !U6
such that the sum , =

⊕
8 �U6=_8 of the corresponding

eigenspaces has dimension < with 2 ¶ < ¶ = − 2. In this case, it su�ces to observe that since U6 lies
outside of Σ, each �U6=_8 is Mod(Σ)-invariant: the Lickorish generators gU1 , . . . , gU6−1 , gV1 , . . . , gV6−1 ,
gW1 , . . . , gW6−2 of Σ � Σ1

6−1 all commute with gU6
and thus preserve the eigenspaces of its action on ℂ=.

If no sum of the form
⊕

8 �U6=_8 has dimension lying between 2 and = − 2, then there must be at
most 2 distinct eigenvalues _ of !U6

, and dim �U6=_ = 1, = − 1, = for all such _. Hence the Jordan form
of !U6

has to be one of

©«

_ 0 0 · · · 0 0
0 _ 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · _ 0
0 0 0 · · · 0 _

ª®®®®®®¬
(1)

©«

_ 1 0 · · · 0 0
0 _ 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · _ 1
0 0 0 · · · 0 _

ª®®®®®®¬
(2)

©«

_ 0 0 · · · 0 0
0 _ 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · _ 1
0 0 0 · · · 0 _

ª®®®®®®¬
(3)

©«

_ 0 0 · · · 0 0
0 _ 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 · · · _ 0
0 0 0 · · · 0 `

ª®®®®®®¬
(4)

for _ ≠ `. We analyze the first two sporadic cases individually.

(1) Here we use the change of coordinates principle: each !U8
, !V8 , !W8 , ![8 is conjugate to !U6

= _,
so all Lickorish generators of Mod(Σ1

6 ) act on ℂ= as scalar multiplication by _ as well. Hence
d(Mod(Σ1

6 )) = 〈_〉 is Abelian.

(2) In this case, , = ker(!U6
− _)2 is a 2-dimensional Mod(Σ)-invariant subspace.

For cases (3) and (4), we consider two situations: �U6=_ ≠ �V6=_ or �U6=_ = �V6=_. If �U2=_ ≠

�V2=_, then, = �U6=_∩�V6=_ is a (=−2)-dimensionalMod(Σ)-invariant subspace: since V6 lies outside
of Σ and !U6

, !V6 are conjugate, both �U6=_ and �V6=_ are Mod(Σ)-invariant (= − 1)-dimensional
subspaces.

Finally, we consider the case where �U6=_ = �V6=_. In this situation, as in the proof of Proposi-
tion 4.2, it follows from Observation 1.3 that there are 58 , 68 , ℎ8 ∈ Mod(Σ1

6 ) with

58gU6
5 −18 = gU8

68gU6
6−18 = gV8 ℎ8gU6

ℎ−18 = gU6

58gV6 5
−1
8 = gV8 68gV66

−1
8 = gW8 ℎ8gV6ℎ

−1
8 = g[8

and thus �U1=_ = · · · = �U6=_ = �V1=_ = · · · = �V6=_ = �W1=_ = · · · = �W6−1=_ = �[1=_ = · · · = �[1−1=_.
In particular, we can find a basis for ℂ= with respect to which the matrix of any Lickorish generator

has the form ©«

_ 0 · · · 0 ∗
0 _ . . . 0 ∗
...

...
. . .

...
...

0 0 · · · _ ∗
0 0 · · · 0 ∗

ª®®®®®®¬
.

Since the group of upper triangular matrices is solvable and Mod(Σ1
6 ) is perfect, it follows that

d(Mod(Σ1
6 )) is trivial. This concludes the proof d(Mod(Σ1

6 )) is Abelian.
To see that d(Mod(Σ1

6 )) = 1 for 6 ¾ 3 we note that, since d has Abelian image and thus factors
though the Abelianization map Mod(Σ1

6 ) −→ Mod(Σ1
6 )ab = Mod(Σ1

6 )/[Mod(Σ1
6 ) ,Mod(Σ1

6 ) ]. Now recall
from Proposition 3.2 that Mod(Σ1

6 )ab = 0 for 6 ¾ 3. We are done. �
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Having established the triviality of the low-dimensional representations d : Mod(Σ1
6 ) −→ GL= (ℂ),

all that remains for us is to understand the 26-dimensional representations of Mod(Σ1
6 ). We certainly

know a nontrivial example of such, namely the symplectic representation k : Mod(Σ6) −→ Sp26 (ℤ)
from Example 1.13. Surprisingly, this turns out to be essentially the only example of a nontrivial 26-
dimensional representation in the compact case. More precisely,

Theorem 4.3 (Korkmaz). Let 6 ¾ 3 and d : Mod(Σ1
6 ) −→ GL26 (ℂ). Then d is either trivial or

conjugate to the symplectic representation2 Mod(Σ1
6 ) −→ Sp26 (ℤ) of Mod(Σ1

6 ).

Unfortunately, the limited scope of these master’s thesis does not allow us to dive into the proof
of Theorem 4.3. The heart of this proof lies in a result about representations of the product �=

3 =

�3 × · · · × �3, which Korkmaz refers to as the main lemma.

Lemma 4.4 (Korkmaz’ main lemma). Given 8 = 1, . . . , =, denote by

08 = (1, . . . , 1, f1, 1, . . . , 1) 18 = (1, . . . , 1, f2, 1, . . . , 1)

the =-tuples in �=
3 whose 8-th coordinates are f1 and f2, respectively, and with all other coordinates equal

to 1. Let < ¾ 2= and d : �=
3 −→ GL< (ℂ) be a representation satisfying:

(i) The only eigenvalue of d(08) is 1 and its eigenspace is (< − 1)-dimensional.

(ii) The eigenspaces of d(08) and d(18) associated to the eigenvalue 1 do not coincide.

Then d is conjugate to the representation

�=
3 −→ GL< (ℂ)

08 ↦−→
©«
12(8−1) 0 0

0
1 1
0 1

0

0 0 1<−28

ª®®®¬
18 ↦−→

©«
12(8−1) 0 0

0
1 0
−1 1

0

0 0 1<−28

ª®®®¬ ,
where 1: denotes the : × : identity matrix.

This is proved in [2, Lemma 7.6] using the braid relations. Notice that for = = 6 and < = 26 the
matrices in Lemma 4.4 coincide with the action of the Lickorish generators gU1 , . . . , gU6

, gV1 , . . . , gV6 ∈
Mod(Σ1

6 ) on �1 (Σ6,ℂ) � ℂ26 – represented in the standard basis [U1], . . . , [U6], [V1], . . . , [V6] for
�1 (Σ6,ℂ).

(gU8
)∗ =

©«
1 0 0

0
1 1
0 1

0

0 0 1

ª®®®¬ (gV8 )∗ =
©«
1 0 0

0
1 0
−1 1

0

0 0 1

ª®®®¬
2Here the map Mod(Σ1

6 ) −→ Sp26 (ℤ) is given by the composition of the inclusion morphism Mod(Σ1
6 ) −→ Mod(Σ6 ) with

the usual symplectic representation k : Mod(Σ6 ) −→ Sp26 (ℤ) .
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Hence by embedding �
6

3 in Mod(Σ1
6 ) via

�
6

3 −→ Mod(Σ1
6 )

08 ↦−→ gU8

18 ↦−→ gV8

we can see that any d : Mod(Σ1
6 ) −→ GL26 (ℂ) in a certain class of representation satisfying some

technical conditions must be conjugate to the symplectic representation Mod(Σ1
6 ) −→ Sp26 (ℤ) when

restricted to �
6

3 .
Korkmaz then goes on to show that such technical conditions are met for any nontrivial d :

Mod(Σ1
6 ) −→ GL26 (ℂ). Furthermore, Korkmaz also argues that we can find a basis for ℂ26 with

respect to which the matrices of d(gW1 ), . . . , d(gW6−1 ), d(g[1 ), . . . , d(g[1−1 ) also agree with the action of
Mod(Σ1

6 ) on �1 (Σ6,ℂ), concluding the classification of 26-dimensional representations.
Recently, Kasahara [18] also classified the (26 + 1)-dimensional representations of Mod(Σ1

6 ) for
6 ¾ 7 in terms of certain twisted 1-cohomology groups. On the other hand, the representations of
dimension = > 26 + 1 are still poorly understood, and fundamental questions remain unsweared. In
the short and mid-terms, the works of Korkmaz and Kasahara lead to many follow-up questions. For
example,

(i) In the 6 ¾ 3 case, Korkmaz [2, Theorem 3] established the lower bound of 36−3 for the dimension
of an injective linear representation of Mod(Σ6) – if one such representation exists. Can we
improve this lower bound?

(ii) What is the minimal dimension for a representation of Mod(Σ6) which does not annihilate the
entire kernel of the symplectic representation k : Mod(Σ6) −→ Sp26 (ℤ)? In particular, do the
(26 + 1)-dimensional representations classified by Kasahara [18] annihilate all of kerk?

These are some of the questions which I plan to work on during my upcoming PhD.
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