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Abstract

We define the categories of 2-Vector Spaces and 2-Term complexes and show that they are
equivalent. Then, we define VB-groupoids and explore the concept of representation up to homotopy.
In the last part we define what a multiplicative section of a VB-groupoid is and show that the
category of multiplicative sections of a VB-groupoid is isomorphic to a 2-vector space.

1 Introduction
This work has the objective of giving an overview of VB-groupoids and to show a proof of the

fact that the collection of multiplicative sections VB-groupoid has the strucutre of a category that is
isomorphic to a 2-Vector space. Out work has the following structure:

• In the first section, we define internal categories and internal functors in order to define 2-Vector
spaces. Then, we define the category of 2-Term Chain Complexes and describe an equivalence
between them. In this section, we follow [BC03] closely.

• In the second section, we start by recalling some notions of Lie groupoid theory that are used
on the subsequent text. Then, we define VB-groupoids, explore some examples and the concept
of representations up to homotopy of a Lie groupoid, mentioning how a representation up to
homotopy allows us to “decompose´´ VB-groupoids in a convenient way. For this section, we
follow closely our main reference [OW19], and [GSM10].

• In this final section, we define what a multiplicative section of a VB-groupoid is, prove that they
can be given the structure of a category. We also give conditions to characterize its morphisms as
certain sections of a vector bundle and vice-versa, and show that this category is isomorphic to a
2-Vector space. In this part we follow [OW19] very closely.

2 2-Vector spaces
Let us recall the definition of an internal category.

Definition 2.1. Given a category X with pullbacks, an internal category K in X consists of:

• an object X0 of objects;

• an object X1 of arrows;

and morphisms s, t : X1 ⇒ X0 (source and target morphisms), i : X0 → X1 (identity-assigning
morphisms), m : X1 ×X0 X1 → X1(composition morphisms) satisfying the following commutativity
conditions:

1. on diagrams specifying the source and target of identity morphisms:

X0 X1

X0

idX0

i

s

X0 X1

X0

idX0

i

t
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2. on diagrams specifying the source and target of compositions:

X1 ×X0
X1 X1

X1 X0

m

p1

s

s

X1 ×X0
X1 X1

X1 X0

m

p2

t

t

3. on the diagram expressing the associativity of compositions

X1 ×X0
×X1 ×X0

×X1 X1 ×X0
X1

X1 ×X0 X1 X1

m×idX1

idX1
×m m

m

4. on the diagram specifying the right and left unit laws

X0 ×X0
X1 X1 ×X0

X1 X1 ×X0
X0

X1

p2

i×X0
idX1

m

idX1
×X0

×i

p1

where the pullback X1 ×X0
X1 defined is of the source and target morphisms.

Now we internalize the morphisms of categories:

Definition 2.2. Given internal categories X,X ′, an internal functor F : X → X ′ consists of two
morphisms, F0 : X0 → X ′0 and F1 : X1 → X ′1 such that the following commutativity conditions are
satisfied:

1. on the diagram expressing the preservation of source and target morphisms

X1 X0

X ′1 X ′0

s

F1 F0

s′

X1 X0

X ′1 X ′0

t

F1 F0

t′

2. on the diagram that specifies that functors preserve identities

X0 X1

X ′0 X ′1

i

F0 F1

i′

3. on the diagram that expresses that compositions are preserved by functors

X1 ×X0 X1 X ′1 ×X′0 X1

X1 X ′1

F1×F1

m m′

F ′1
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Internal categories and internal functors are concepts that express the idea of "an "object" inside
a given category that behaves like one, respecting the structure of objects and morphisms of first
category".

Definition 2.3. A 2-vector space is an internal category on the category of Real Vector Spaces and
Linear maps VectR.

In explicit terms, a 2-Vector Space consists of two vector spaces V0 and V1, where V0 is the vector
space of objects, and V1 is the vector space of arrows; together with source, target, identity-assigning
and composition linear maps as defined on Definition 2.1.

One useful observation for 2-Vector spaces is that composition on V1 can be expressed using the
vector space operations of V1: we rewrite morphisms f : x → y ∈ V1 as (x, ~f) : 0 → y − x, where
~f = f − i(s(f)) is its arrow part, and composition takes the form (y,~g)(x, ~f) := (x,~g+ ~f). A proof of
this fact can be found on [BC03]

Definition 2.4. Given 2-Vector spaces V andW , a linear functor from V toW is an internal functor
F : V →W . 2-Vector Spaces and linear functors form a category, called 2-Vect.

We describe now an equivalence of 2-Vect with the category 2-Term of 2-term chain complexes,
that is, pairs of real vector spaces with a linear map between them

W1 W0;d

as morphisms we have chain maps between them, i.e., pairs ϕ1 : W1 → W ′1, ϕ0 : W0 → W ′0 of
linear maps such that the following diagram commutes:

W1 W0

W ′1 W ′0.

d

ϕ1 ϕ0

d′

To describe an equivalence, we define two functors T : 2-Vect→ 2-Term and S : 2-Term→ 2-Vect
whose compositions are naturally isomorphic to the identity functors.

• Definition of T : on objects, T takes a 2-Vector Space V1 ⇒ V0 and maps it to the 2-Term chain
complex given by

ker(s) V0.
t|ker(s)

On morphisms, T takes a linear functor from V1 ⇒ V0 to V ′1 ⇒ V ′0 given by (F0, F1) from and
maps it to the chain map ϕ0 := F0 : V0 → V ′0 , ϕ1 := F1 |ker(s): ker(s)→ ker(s′). Note that ϕ1 is
well-defined since for (x, ~f) ∈ ker(s), s′ ◦ F1(x, ~f) = F0 ◦ s(x, ~f) = 0, and since F1 commutes with
t, it is a chain map.

• Definition of S : on objects, S takes a 2-Term Chain Complex W1 W0
d and maps it into

the 2-Vector Space W0 ⊕W1 ⇒ W0 with source, target and identity-assigning maps given by
s(x, ~f) = x, t(x, ~f) = x+ d~f and i(x) = (x, 0). Note that W1

∼= ker(s), and the decomposition
W0 ⊕W1 is precisely the decomposition of morphisms into sources and arrow parts.

On morphisms, S takes a chain map (ϕ0, ϕ1) and maps into the linear functor defined as F0 := ϕ0

and F1 = ϕ0⊕ϕ1. Note that F is linear on objects and morphisms and preserves the source, target,
identity and composition maps, since they are defined in terms of addition and the differential in
the chain complexes, and both ϕ0 and ϕ1 are linear and preserve the differential.

The natural isomorphisms γ : TS =⇒ 12-Vect and δ : ST =⇒ 12-Term are defined as follows:
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• Definition of γ: Since TS maps a 2-Vector Space V1 ⇒ V0 (which we refer to as V ) into a 2-Vector
Space V0⊕ker(s) ⇒ V0 (which we refer to as V ′), with s, t the source and target maps of V1 ⇒ V0

and s′(x, ~f) = x, t′(x, ~f) = x+ t ~f the source and target maps of V0 ⊕ ker(s) ⇒ V0.

We can define then an isomorphism γV by

(γV )0 : x ∈ V0 7→ x ∈ V0,

(γV )1 : (x, ~f) ∈ V0 ⊕ ker(s) 7→ i(x) + ~f ∈ V1

The fact that γV is as isomorphism follows from the uniqueness of the decomposition of f ∈ V1

as (x, ~f).

• Definition of δ: Since ST maps a 2-Term chain complex W1 W0
d to a 2-Term Chain

Complex given by ker(s) W0

t|ker(s) , where s, t are respectively the source and target maps of

the 2-Vector Space W0 ⊕W1 ⇒W0 given by s(x, ~f) = x and t(x, ~f) = x+ d~f , we define δ as the
chain map (ϕ0, ϕ1) where ϕ0 : W0 → W0 is the identity and ϕ1 : ker(s) → W1 is given by the
isomorphism (0, ~f) 7→ ~f .

From this discussion we can conclude that

Theorem 2.1. The categories 2-Vect and 2-Term are equivalent.

3 VB-groupoids
We recall here basic concepts relating groupoids and Lie groupoids. A reference for this content is

[CF11].

Definition 3.1. A groupoid G ⇒M consists of two sets, the set of arrows G, the set of objects
M , together with:

• source and target maps s, t : G →M mapping each arrow g to its source s(g) and target t(g);

• a composition map m defined on the set G(2) = {(g, h) ∈ G2 : s(g) = t(h)} that takes two
composable arrows to a new arrow m(g, h) := gh in G;

• a unit map 1 : M → G that maps elements m in M to identity arrows 1m in G;

• a inverse map i : G → G that takes arrows g to their inverses g−1;

where those maps (which we call structure maps) satisfy the following:

1. for every (g, h) ∈ G2, s(gh) = s(h) and t(gh) = t(g);

2. for every (g, h), (h, k) ∈ G2, then (gh)k = g(hk);

3. for every f, g ∈ G and x ∈M such that (f, 1x), (1x, g) ∈ G(2), f1x = f and 1xg = g;

4. for every g ∈ G, g−1g = 1s(g) and gg−1 = 1t(g).

Using categorical language, a groupoid is just a small category where every morphism is invertible.

Definition 3.2. A Lie groupoid is a groupoid G ⇒M where both the set of objects and arrows are
manifolds, all structure maps are smooth and the source and target maps are submersions.

Example 3.1. A Lie group G is a Lie groupoid G⇒ {∗} over the trivial manifold.

Example 3.2. Given a vector bundle π : E →M , there is a Lie groupoid GL(E) ⇒M with M as the
set of objects and morphisms f : x→ y ∈ GL(E) are isomorphisms between the fibers of Ex and Ey.
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Example 3.3. Given a groupoid G ⇒M , a manifold N and a smooth map f : N →M , we define a
left groupoid action along f to be a smooth map θ : G×M N → N such that the following hold:

1. f(θg(x)) = t(g), for x in N ;

2. if (g, h) ∈ G(2), θg(θh(x)) = θgh(x)

3. θ1(x) = id |f−1(x)

Given a left groupoid action of G ⇒ M along f : N → M , we can define an action groupoid
G n N ⇒ N with N as its set of objects, and as arrows we have pairs (g, x) ∈ G ×M N with
source s(g, x) = g, target t(g, x) = θg(x) and composition given by (g, y)(h, x) = (gh, x). In the case
that G ⇒ {∗} is a Lie group, the only possible smooth map f : N → {∗} is the constant one, so
G×m N = G×N and we regain the notion of a left action of a Lie group G on a manifold N . The
corresponding action groupoid has G×N as set of objects. The notion of right action along a map and
its corresponding action groupoid are defined analogously.

Definition 3.3. Given two Lie Groupoids G ⇒M and H⇒ N , a morphism of Lie groupoids is a
pair of maps (F0, F1) where F0 : M → N , F1 : G → H preserve the groupoid structure, i.e., they satisfy
the following:

1. if g : x→ y, then F1(g) : F0(x)→ F0(y);

2. if (g, h) ∈ G(2), F1(gh) = F1(g)F1(h);

3. if x ∈M , F1(1x) = 1F0(x).

Using categorical language, a morphism of Lie groupoids is simply a functor.

Definition 3.4. A representation of a Lie groupoid G ⇒M consists of a vector bundle π : E →M
and a morphism F : G → GL(E).

We recall here briefly the definition of the Lie algebroid of a Lie groupoid. It will appear as an
example in the next section.

Definition 3.5. Let G ⇒ M be a Lie groupoid. The Lie algebroid of G is the vector bundle
Lie(G) := M ×G ker(ds) with the restriction of the vector bundle map dt |ker(ds) as its anchor map,
and a Lie bracket [ · ; · ]Lie(G) on its space of sections that is induced by the Lie bracket on the space of
right-invariant vector fields on G.

3.1 VB-groupoids
In the study of Manifolds, vector bundles are important objects. Many important objects are

defined using them: from vector fields to differential forms, connections, and so on. What we introduce
now is the corresponding notion of vector bundle for a Lie groupoid G ⇒ M . Since a vector bundle
over a manifold M is a manifold that is a union of vector spaces that satisfy a certain local triviality
condition, it is natural that a “vector bundle groupoid” over a Lie groupoid G ⇒M consists of a Lie
groupoid where both sets satisfy a local triviality condition over the corresponding arrow/object sets,
such that the groupoid and vector bundle structures are compatible. We formalize this discussion in
the following definition:

Definition 3.6. A VB-groupoid over a Lie groupoid G ⇒ M consists of a Lie groupoid V ⇒ E
together with surjective submersions qV : V → G and qE : E → M making both into vector bundles
which are compatible with the Lie groupoid structure, i.e., the structure maps s̃, t̃, 1̃, ĩ, m̃ of V ⇒ E are
vector bundle morphisms over the corresponding structure maps of G ⇒M .

We represent a VB-groupoid as a square:

V E

G M.

s̃

t̃

qV qE

s

t
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It follows from the definition that (qV , qE) is a morphism of Lie groupoids from V ⇒ E to G ⇒M .

Definition 3.7. We define the core of V ⇒ E to be the pullback C := M ×G ker(s̃) of 1 : M → G and
qV |ker(s̃): ker(s̃)→ G, that is, the arrows v1x

of V that are in ker(s̃).

Since s̃ is a surjective submersion, it has constant rank and thus ker(s̃) is well-defined as a vector
bundle over G.

Proposition 3.1. Let V ⇒ E be a VB-groupoid over G ⇒M , and let C be its core. Then the following
sequence is an exact sequence of vector bundles over G:

0 t∗C V s∗E 0r q

where r(ct(g)) := ct(g)0̃g, and q(vg) = (g, s̃(v)).

Proof: Let (g1, g2) ∈ G(2). The fact that m̃ is a vector bundle morphism implies that right-
multiplication by g2 induces a linear isomorphism on the fibers ker(s̃)g1 with ker(s̃)g1g2 . In particular,
it induces a linear isomorphism from ker(s̃)1t(g)

to ker(s̃)g. However, ker(q) = ker(s̃), hence we have a
vector bundle isomorphism from t∗C to ker(q), which implies the exactness of the sequence.

Some examples of VB-groupoids follow:

Example 3.4. A VB-groupoid over the trivial Lie Groupoid {∗}⇒ {∗} is simply a 2-Vector Space,
since a vector bundle over a point is just a vector space.

Example 3.5. If G ⇒M is a Lie groupoid, application of the Tangent functor gives us the Tangent
groupoid TG ⇒ TM . It is a VB-groupoid over G ⇒M with core Lie(G).

Example 3.6. Dualizing the previous example, we obtain the cotangent groupoid T ∗G ⇒ Lie(G)∗,
with core T ∗M . It is a particular case of a dual of a VB-groupoid: Given a VB-groupoid V ⇒ E
with core C, the dual VB-groupoid over G ⇒M is V∗ ⇒ C∗. For a detailed construction of its strucutre
maps, see [Mac05].

Example 3.7. Given a representation of a Lie groupoid F : G → GL(E), the action groupoid
GnE = s∗E ⇒ E has a structure of VB-groupoid over G ⇒M with zero core since C := M×G ker(s̃) =
{v1m

∈ ker(s̃) : s̃(v1m
) = 0m} and s̃ is the coordinate projection on fibers, thus ker(s̃) = {(g, 0g) ∈ G×E}

and C consists of the zero section on the units of G. In fact, as a consequence of the exactness of the
core sequence, every VB-groupoid with zero core is of this form.

Example 3.8. Recall that an G-equivariant vector bundle consists of a vector bundle π : E →M
together with an action of a Lie group G on E and M such that E and M are left G-spaces, the
projection is G-equivariant (i.e. π(gx) = gπ(x)) and left-multiplication lg : Ex → Egx is linear.

G-equivariant vector bundles are equivalent to representations of the groupoid GnM ⇒M . Indeed,
given a representation F of G nM ⇒ M on a vector bundle E, we can define a G-action on E by
(g, em) 7→ Fg(em); and conversely given a G-equivariant vector bundle, we can define a representation
by (g,m) 7→ lg(em) on arrows and by the identity on objects.

Consequently, given a G-equivariant vector bundle E → M , the groupoid s∗E ⇒ E has a VB-
groupoid structure over G nM ⇒ M . However, s∗E = {((g,m), en) ∈ (G nM) × E : m = n} =
{(g, em) ∈ G× E} = Gn E, so Gn E ⇒ E is a VB-groupoid over GnM ⇒M .

We now introduce the concept of representation up to homotopy of a Lie groupoid. It is a
generalization of the notion of representation of a Lie groupoid, and will be used to obtain a useful
decomposition of a VB-groupoid that will allow us to make explicit computations later. For that, we
need some definitions first:

Definition 3.8. Let V1 ⇒ E1 and V2 ⇒ E2 be two VB-groupoids over G1 ⇒ M1 and G2 ⇒ M2

respectively. A VB-morphism is a quadruple (ΨV ,ΨE ,ΨG ,ΨM ) where (ΨV ,ΨE) and (ΨG ,ΨM ) are
Lie groupoid morphisms, (ΨV ,ΨG) and (ΨE ,ΨM ) are vector bundle morphisms and the following
diagram commutes:
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V1 E1

V2 E2

G1 M1

G2 M2

q1V
ΨV ΨE

q1E

q2V

ΨG ΨM
q2E

Definition 3.9. A quasi-action of a Lie groupoid G ⇒M on a vector bundle E →M is a smooth
map ∆ : G → GL(E) such that ∆g : Es(g) → Et(g) for every g ∈ G. A quasi-action is unital if
∆1x

= Id, for every x ∈M ; and flat if ∆gh = ∆g∆h for composable pairs (g, h) ∈ G(2).

Using these concepts, a representation of a lie groupoid on a vector bundle is just a flat unital
quasi-action.

Definition 3.10. Let G ⇒M be a Lie groupoid. A representation up to homotopy of G on the
graded vector bundle C ⊕ E is given by a quadruple (∂,∆C ,∆E ,Ω) where:

• ∂ : C → E is a bundle map;

• ∆C and ∆E are unital quasi-actions on C and E respectively;

• Ω ∈ Hom(s∗E, t∗C) is a section assigning to each composable pair (g1, g2) ∈ G(2) is a linear map
Ωg1,g2 which is normalized, i.e., Ωg1,g2 = 0 if either g1 or g2 is a unit, satisfying the following
conditions:

∆E
g1 ◦ ∂ = ∂ ◦∆C

g1

∆C
g1∆C

g2 −∆C
g1g2 + Ωg1,g2∂ = 0

∆E
g1∆E

g2 −∆E
g1g2 + ∂Ωg1,g2 = 0

∆C
g1Ωg2,g3 − Ωg1g2,g3 + Ωg1,g2g3 + Ωg1,g2∆E

g3 = 0

for every composable triple (g1, g2, g3).

As explained in [GSM10], such a structure induces a Lie groupoid structure on the vector bundle
t∗C ⊕ s∗E → G turning it into a VB-groupoid over G ⇒M with core C and having E as set of objects.
Its structure maps are defined as follows:

• s̃(c, g, e) = e,

• t̃(c, g, e) = ∂(c) + ∆E
g (e),

• 1̃e = (0C(x), 1(x), e), e ∈ Ex,

• (c1, g1, e1)(c2, g2, e2) = (c1 + ∆C
g1(c2)− Ωg1,g2(e2), g1g2, e2),

• (c, g, e)−1 = (−∆C
g−1(c) + Ωg−1,g(e), g

−1, ∂(c) + ∆E
g (e)).
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A VB-groupoid of the form t∗C ⊕ s∗E ⇒ E together with the structure maps just defined is a split
VB-groupoid.

In the opposite way, a representation up to homotopy can be obtained from a VB-groupoid. First,
note that for each x ∈M , the fiber Vx is canonically isomorphic to Cx ⊕Ex by (c, e) 7→ c+ 1̃(e), in an
analogous manner to the isomorphism described in the discussion preceding Theorem 2.1.

Now, an horizontal lift of V is a map h : s∗E → V such that q ◦ h = 1E and at every unit x ∈M
it coincides with the decomposition just described. In [GSM10] it is proved that horizontal lifts always
exist (albeit not in a canonical way, their existence relies on a partition of unity argument), and are
used to define a representation up to homotopy of G ⇒M . Even more can be said, as it is proved that
the choice of a horizontal lift induces a VB-isomorphism of a VB-groupoid with a split VB-groupoid.

We will use this isomorphism to study the structure of multiplicative sections - the “correct” notion
of sections for VB-groupoids. For that, we will need expressions for the right and left-invariant section
of a split VB-groupoid. By the definition of the structure maps, we have:

• cr(g) := ct(g) · 0̃g = (ct(g), g, 0);

• cl(g) = −0̃g · ĩ(cs(g)) = −0̃g · (cs(g), 1s(g), ∂(c)) = (∆C
g (cs(g), g,−∂(cs(g))).

4 The category of multiplicative sections
When vector bundles are studied, an object of particular interest are sections. In this section, we

will define what should be a section of a VB-groupoid and show that they have not only the structure
of a vector space, but that of a 2-Vector space.

Since a VB-groupoid consists not only of two vector bundles, but two Lie groupoid structures on
the total and base spaces, the correct concept of section of a VB-groupoid must respect the groupoid
structure, i.e., it should be a morphism of Lie groupoids.

Definition 4.1. Let V ⇒ E be a VB-groupoid over G ⇒ M . A multiplicative section is a pair
(V, e) ∈ Γ(V)⊕ Γ(E) that is a morphism of Lie groupoids from G ⇒M to V ⇒ E.

The set of all multiplicative sections is denoted Γmult(V). It can be made into a vector subspace of
Γ(V)⊕ Γ(E) since the structure maps are fiberwise linear.

Example 4.1. If V1 ⇒ V0 is a 2-Vector Space regarded as a VB-groupoid over {∗} ⇒ {∗}, then
Γmult(V) can be identified with V0, since functors from the trivial groupoid can be identified with the
set of units V0 in V1.

Example 4.2. In the case of the Tangent Groupoid TG ⇒ TM , a multiplicative section is called a
multiplicative vector field. The space of multiplicative vector fields is denoted Xmult(G).

Example 4.3. In the case of the cotangent groupoid T ∗G ⇒ A∗, multiplicative sections are called
multiplicative 1-forms. The space of multiplicative 1-forms is denoted Ω1

mult(G).

Example 4.4. If G nE ⇒ E is the VB-groupoid associated to a representation of G ⇒M on a vector
bundle E →M , then Γmult(G n E) can be identified with with the space of G-invariant sections of E:

Γ(E)G = {e ∈ Γ(E) : g · (e(s(g))) = e(t(g))}

If (V, e) ∈ Γmult(G n E), since (V, e) is a morphism of Lie groupoids, s̃ ◦ V (g) = e(s(g)) implies
that V = s∗e, and from t̃ ◦ V (g) = e(t(g)) follows that t̃ ◦ V (g) = g · (s∗e)(g) = g · (e(s(g))) = e(t(g)).
Conversely, if e ∈ Γ(E)G , then (s∗e, e) is multiplicative. Indeed, given (g, h) ∈ G(2), notice that
h · e(s(h)) = e(t(h)) = e(s(g)). Thus (s∗e)(g)(s∗e)(h) = (g, es(g))(h, es(h)) = (gh, es(h)) = (gh, es(gh)) =
(s∗e)(gh).

Example 4.5. If GnE ⇒ E is the action groupoid associated to a G-equivariant vector bundle, then
by the preceding example Γmult(G×E) = Γ(E)GnM . However, since the elements (g,m) act only on
elements of Em, we can identify Γ(E)GnM with Γ(E)G.

Proposition 4.1. A VB-isomorphism between V1 ⇒ E1 and V2 ⇒ E2 over G ⇒ M induces an
isomorphism Γmult(V1) ∼= Γmult(V2).
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Proof: First, we note that if (ΨV ,ΨE , idG , idM ) is a VB-morphism, and (V, e) ∈ Γmult(V1), then
since (ΨV , IdG) and (ΨE , IdM ) are vector bundle morphisms, then (ΨV ◦ V,ΨE ◦ e) ∈ Γ(V2) and it is a
functor because it is the composition of two functors. Now, if the VB-morphism is a VB-isomorphism,
we can define the inverse map in an analogous manner. The isomorphism thus follows from fiberwise
linearity of (ΨV , idG) and (ΨE , idM ).

As a direct consequence of Proposition 4.1. and of the isomorphism between a VB-groupoid V ⇒ E
and the split VB-groupoid t∗C ⊕ s∗E determined by a representation up to homotopy, we have an
isomorphism Γmult(V) ∼= Γmult(t

∗C ⊕ s∗E) that allows us reduce the study of multiplicative sections to
a more computable case.

One consequence of this isomorphism is that we can prove by direct computation that sections of
the core determine multiplicative sections of a VB-groupoid in a simple way:

Proposition 4.2. Let V ⇒ E be a VB-groupoid, with C as its core. If c ∈ Γ(C), then cr−cl ∈ Γmult(V).

Proof: First, note that given a VB-map (ΨV ,ΨE , idG, idM ) between VB-groupoids V1 ⇒ E1 and
V2 ⇒ E2 preserves left and right-invariant sections of V1 ⇒ E1. Indeed, ΨV(cr(g)) = ΨV(ct(g) · 0̃g) =

ΨV(c)t(g) · 0̃g = ΨV(c)r(g); the case of a left-invariant section is analogous.
Now, consider a section c ∈ Γ(C). We have

(cr − cl)(g) = (ct(g), g, 0)− (∆C
g cs(g), g,−∂cs(g))

= (ct(g) −∆C
g cs(g), g, ∂cs(g))

On one hand:

(cr − cl)(gh) = (ct(g) −∆C
ghcs(h), gh, ∂cs(h))

= (ct(g) −∆C
g ∆C

h cs(h) − Ωg,h∂cs(h), gh, ∂cs(h)),

where the last equality follows from the second condition of a representation up to homotopy. On
the other hand,

(cr − cl)(g) · (cr − cl)(h) = (ct(g) −∆C
g cs(g), g, ∂cs(g)) · (ct(h) −∆C

h cs(h), h, ∂cs(h))

= (ct(g) −∆C
g cs(g) + ∆C

h ct(h) −∆C
g ∆C

h cs(h) − Ωg,h∂cs(h), gh, ∂cs(h))

= (ct(g) −∆C
g ∆C

h cs(h) − Ωg,h∂cs(h), gh, ∂cs(h)),

where the last equality follows because of the second condition of a representation up to homotopy,
and because since s(g) = t(h), cs(g) = ct(h). Hence (cr − cl)(gh) = (cr − cl)(g)(cr − cl)(h) for any
(g, h) ∈ G(2).

The set Γmult(V) carries more structure than that of a vector space. Since multiplicative sections
are functors, we can use natural transformations to turn it into a category.

Definition 4.2. Let V ⇒ E be a VB-groupoid over G ⇒ M . The category of multiplicative
sections Sec (G,V) is the subcategory of HomLieGrpd (G,V) defined as:

• Objects: Multiplicative sections (V, e) of V ⇒ E;

• Morphisms: Smooth natural transformations τ : V ⇒ V ′ such that 1qV • τ = 1idG , where •
indicates the horizontal composition of natural transformations. The composition in Sec(G,V) is
the vertical composition of natural transformations.

Morphisms in Sec(G,V) have a simpler description: They are certain sections of the pullback 1∗V,
which is isomorphic to C ⊕ E.

Proposition 4.3. Let V ⇒ E be VB-groupoid, (V, e),(V ′, e′) ∈ Sec (G,V). A natural transformation
τ : V ⇒ V ′ is a morphism in Sec(G,V) if, and only if τ(x) ∈ V1x , for all x ∈M .
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Proof: Let 1x ∈ G be a unit. We have

(1qV • τ)(x) = 1qV (qE ◦ e′(x))qV(τ(x))

= (1qV (x) ◦ qV(τ(x))

= 1x ◦ qV(τ(x))

= qV ◦ τx

whereas 1idG (x) = 1x. So 1qV • τ = 1idG ⇐⇒ qV ◦ τ = 1 : M → G ⇐⇒ τ(x) ∈ V1x
.

Conversely, we can describe which sections of V are natural transformations in Sec(G,V). For that,
we want to consider our VB-groupoid to be a split one associated to a representation up to homotopy.
To do that, first we enhance the isomorphism given in Proposition 4.1.:

Proposition 4.4. Let V1 ⇒ E1 and V2 ⇒ E2 be isomorphic VB-groupoids over G ⇒ M . Then
Sec(G,V1) ∼= Sec(G,V2).

Proof: Let (ΨV ,ΨE , idG , idM ) be a VB-isomorphism, and define the functor (ΨV ,ΨE) : Sec(G,V1)→
Sec(G,V2) by the following: on objects, it maps a multiplicative section (V, e) and maps into (ΨV ◦
V,ΨE ◦ e), and on morphisms it takes a natural transformation τ : V ⇒ V ′ and maps to ΨV(τx) :
ΨV ◦ V ⇒ ΨV ◦ V ′.

We already know by Proposition 4.1. that this defines a bijection on the sets of objects. To see that
ΨV(τx) is a well-defined natural transformation, given g : x→ y in G, it follows from functoriality of
ΨV that V (g) ◦ τx = τy ◦ V ′(g) implies

ΨV(V (g)) ◦ΨV(τx) = ΨV(V (g) ◦ τx)

= ΨV(τy ◦ V ′(g))

= ΨV(τy) ◦ΨV(V ′(g)).

Now, by Proposition 4.3., we need to prove that ΨV(τ(x)) ∈ V21x
, but this is a consequence of

the fact that ΨV is a vector bundle morphism, and τx ∈ V1x . It is a functor since functoriality of ΨV

implies ΨV(σ ◦ τ)(x) = ΨV(τx) ◦ΨV(σx) and ΨV(1x) = 1x for σx, τx, 1x natural transformations on
Sec(G,V1).

Proposition 4.5. Let (V, e), (V ′, e′) ∈ Γmult(V), and suppose that τ : M → V is a smooth map with
qV ◦ τ = 1 : M → G. Identify τ with a section (c0, e0) ∈ Γ(1∗V) ∼= Γ(C) ⊕ Γ(E). Then τ defines a
morphism τ : V ⇒ V ′ if, and only if the following conditions hold:

1. e0 = e

2. e′0 = e0 + ∂(c0)

3. V ′ = V + cr0 − cl0
Proof: Let V = t∗C ⊕ s∗E ⇒ E be the VB-groupoid associated with a representation up to

homotopy. A smooth map τ : M → V is a natural transformation V ⇒ V ′ if, and only if the following
hold:

(i) s̃ ◦ τ = e

(ii) t̃ ◦ τ = e′

(iii) τ(g) is natural in g with respect to (V, e) and (V ′, e′).

For x ∈M , we have:

s̃ ◦ τ(x) = s̃(c0(x), 1x, e0(x)) = e0(x)

t̃ ◦ τ(x) = t̃(c0, 1x, e0(x)) = ∂(c0(x)) + e0(x)

Hence i. ⇔ 1. and ii. ⇔ 2.; Now, assume that τ : M → V satisfies both i. and ii. Naturality of
τ : V ⇒ V ′ means that for g ∈ G, the following diagram commutes:
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e(s(g)) e′(s(g))

e(t(g)) e′(t(g)).

τs(g)

V (g) V (g′)

τt(g)

Since V = t∗C ⊕ s∗E, we write V (g) = (ct(g), g, es(g)) and V ′(g) = (c′t(g), g, e
′
s(g)).

On one hand:

τ(t(g))V (g) = (c0(t(g)), 1t(g), e0(t(g))) · (ct(g), g, es(g))
= (c0(t(g)) + ∆C

1t(g)
(ct(g)), g, es(g))

= (c0(t(g)), g, 0) + (ct(g), g, es(g))

= cr(g) + V (g).

On the other hand:

V ′(g) · τ(s(g)) = (c′t(g), g, e
′
t(g)) · (c0(s(g)), 1s(g), e0(s(g)))

= (c′t(g) + ∆C
g (c0(s(g))), g, e0(s(g)))

= (c′t(g) + ∆C
g (c0(s(g))), g, e′s(g) − ∂c0(s(g)))

= (c′t(g), g, e
′
s(g)) + (∆C

g (c0(s(g))), g,−∂c0(s(g)))

= V ′(g) + cl(g).

Thus V ′ = V + cr0 − cl0.

Definition 4.3. Let V ⇒ E be a Lie groupoid over G ⇒ M with core C. The complex of multi-
plicative sections of V, denoted C•mult(V) is the 2-Term complex of vector spaces

δ : Γ(C)→ Γmult(V)

c 7→ cr − cl.

Theorem 4.1. The category Sec(G,V) is isomorphic to the underlying category of the 2-Vector space
Γ(C)⊕ Γmult(V) ⇒ Γmult(V).

Proof:We define the following functor candidates: one, from Sec(G,V) to Γ(C) ⊕ Γmult(V) ⇒
Γmult(V), that is the identity on objects and mapping a natural transformation τ : V ⇒ V ′ to an
arrow (c0, (V, e0)), where τ is identified with (c0, e0). The inverse, from Γ(C)⊕ Γmult(V) ⇒ Γmult(V)
to Sec(G,V), that is also the identity on objects, and that takes an arrow (c, (V, e)) to the natural
transformation given by (c, e) : V ⇒ V + cr − cl. By Propositions 4.3. and 4.5., both are bijections on
objects and morphisms.

We prove now that they are functors. Let (V, e), (V ′, e′), (V ′′, e′′) be multiplicative sections, and
τ : V ⇒ V ′, σ : V ′ ⇒ V ′′ be composable morphisms in Sec(G,V) with τ = (c0, e), σ = (c1, e

′) in
Γ(C)⊕ Γ(E). Vertical composition of natural transformations gives the following diagram for σ ◦ τ :

es(g) et(g)

e′′s(g) e′′t(g).

V (g)

σ(s(g))τ(s(g)) σ(t(g))τ(t(g))

V ′′(g)

To prove that the composition corresponding to σ ◦ τ is the composition (c1, (V
′, e′))(c0, (V, e)) :=

(c1 + c0, (V, e)), first note that by Proposition 3.4, s̃(c1, (V ′, e′)) = V ′ = V + δ(c0) = t̃(c0, (V, e)). So,
by the same proposition, we are left with proving that
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σ(t(g))τ(t(g))V (g) = (c1 + c0)r(g) + V (g)

V ′′(G)σ(s(g))τ(s(g)) = V ′′(g) + (c1 + c0)l(g),

For the first identity, we have by the proof of Proposition 3.4. that

τ(t(g))V (g) = cr0(g) + V (g) = (c0(t(g)) + c(t(g)), g, e(s(g)))

consequently

σ(t(g))τ(t(g))V (g) = (c1(t(g)), 1t(g), e
′(t(g)))(c0(t(g)) + c(t(g)), g, e(s(g)))

= (c1(t(g)) + ∆C
1t(g)

(c0(t(g)) + c(t(g)), g, e(s(g)))

= (c1(t(g)) + c0(t(g)), g, 0) + (c(t(g)), g, e(s(g)))

= (c1 + c0)r(g) + V (g).

We proceed analogously for the second identity. Note that:

V ′′(g)σ(s(g)) = V ′′(g) + cl1(g) = (c̄(t(g)), g, ē(s(g))) + (∆C
g (c̄s(g)), g,−∂(c̄s(g))

= (c̄(t(g)) + ∆C
g (c̄s(g)), g, ē(s(g))− ∂(c̄s(g))),

consequently

V ′′(g)σ(s(g))τ(s(g)) = (c̄(t(g)) + ∆C
g (c̄s(g))), g, ē(s(g))− ∂(c̄s(g)))(c0(s(g)), 1s(g), e(s(g)))

= (c̄(t(g)) + ∆C
g (c1(s(g)) + c0(s(g))), g, e0(s(g)))

= (c̄(t(g)) + ∆C
g (c1(s(g)) + c0(s(g))), g, e′′(s(g))− ∂(c0 + c1))

= (c̄(t(g)), g, e′′(s(g))) + (∆C
g (c1(s(g)) + c0(s(g))), g, ∂(c0 + c1))

= V ′′(g) + (c1 + c0)l(g),

where the change in the third coordinate from the second to the third line follows from e′ = e+∂(c0)
and e′′ = e′ + ∂(c1).
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