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1 Introduction

I'm going to describe the process called Geometric Quantization which is
based in using tools of sympletic geometric to associate a quantum system
to a classical system (such as Harmonic Oscillator).The process consists of
three different steps, first we consider the configuration space @) of the clas-
sical system and then the cotangent space M = T*() which has a natural
structure of symplectic manifold, i.e, it has a natural closed 2 form express-
ible locally like w|y = )", d¢® A dp, where (¢%,p,) € U C M =T*Q (This is
thanks to Darboux’s theorem). Note that ¢* € @ are the positions compo-
nents of the systems and p, are the momentum for every position component.

We use prequantization to obtain a Hilbert space that result not be com-
pletely satisfactory because of correspondent Hilbert space is too big and
many of the observables aren’t correctly reproduced. That’s way, we correct
this by a process called polarization that reduces of number of variables of
operator to finally do the quantization well.

2 Observations

(1) It’s important to keep in mind that not every manifold can be quantizable
and not every symplectic manifold as well can be quantizable, in order for
a symplectic manifold be quantizable is necessary that the manifold satisfies
the condition of integrality discuss in the next sections.



(2) Not every symplectic manifold have a form of a cotangent space (in
some way, it looks like a cotangent space but locally in a finite number of
cards, thanks to Darboux’s Theorem).

(3) Every classical system can be quantizable but if we have a quantum
system it’s not the case that it came from a classical system, one classical
example is the spin.

3 Why is the geometric quantization important-
useful?

GC is important because it enables us to give another interpretation to clas-
sical mechanic, i.e, we now can understand the behavior of a Hamiltonian
systems which is a mathematical description of a big object from of point of
view of the physics used to understand micro particles.

4 What is a classical system?

A classical system is a mathematical descriptions of a macro physical phe-
nomenon, in this work we will only focusing our attention to conservative
Hamiltonian Systems which makes part of classical systems

Examples of Hamiltonian systems

We will only give an example of a Hamiltonian system called Harmonic
oscillator but if you are interested in knowing more of these examples, see P
for more like Kepler problem and Particle in a field.

In the case of the Harmonic Oscillator we have
M =T*Q =T'R" =2 R" x R" =~ R*"

then we have that we configuration space is () = R"™ and the phase space is
M = R,

So, this manifold is also equipped with the 2-form w = dg* A dp,. Also we
have as a a hamiltonian function H € C*(M = R?") callled also observable
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given by

H(4.p) = 5 lall* + 1ol

And a vector field associate with H which we will called Hamiltonian
vector field:

0 0
Xy = pa— — ¢
H paaqa q apa

Observation

Following the same idea, for every observable f € C*(M) we have a
field vector Xy called Hamiltonian vector field. This correspondence turns
out to be an homomorphism and we can construct and isomorphism making
some adjust and using the machinery of the symplectic manifold which has
special characteristics (this is important later in the text to construct the
precuantization function).

5 Geometric interpretation of a classical sys-
tem

Given a (conservative) Hamiltonian System, we can associate a geometric
object to that of the following way. Let () the configurations space of the
Hamiltonian System which is a manifold. We then consider the cotangent
space of the configuration space, which is M = T*(@) and it’s called the phase
space.

Functions on M = T*Q are called observables, i.e f(q,p) € C*(T*Q).
Since the Hamiltonian system comes with a Hamiltonian function H, this
function makes part of the observables, here H(q,p) € C*°(M = T*Q) where
(¢,p) € T*Q. And the manifold obtained from a Hamiltonian system is usu-
ally refer like (M, w, H)



Observation I'm doing slight notation abuses calling elements in 7%Q)
like (¢,p) because elements in T*Q are expressible like p,dq®, but we will
usually use the above notation.

Like we saw early, the cotangent space has a natural non degenerate,
closed 2-form which is given by w = >, dq¢" A dp; where (¢, ...,¢") are the
positions coordinates of the movement described by the Hamiltonian system
and (p1, ..., pn) are the coordinates of the momentum associate to each of the
component of the coordinate of position. (this notations of super indices are
taken by convention and it-s called the Einstein notation).

Given that the symplectic manifold has a 2-form, we can consider the
vector field X for a observable f € C°°(M) as the 1-form:
df = _w<Xf )

Locally, the vector field looks like

af & 9f
dp; 0" Oq' Op;

Xtlo =

Notation The vector field associate with a observable is called a Hamil-
tonian vector field.

Another thing we can say is the Hamiltonian vector fields define an infinity
dimensional algebra if we define

{ X5 Xg} = w(Xy, Xy) = —df (X,)

for f, g observables.

6 Review of symplectic geometry

In this section I'm going to describe what I will need of Symplectic Geometric
in order to describe of process of Quantization. Clearly it’s a uncompleted
description of Symplectic Geometric because all will be focus only to de-
scribe GC. Symplectic geometric is a full interesting subject by its own, and
for more detailed description of this see [7].



Differential 2-form

Let M a differentiable manifold. A differential 2-form is a function
w : X(M) x X(M) — R that is bi-linear and antisimetric. Note that
w € (X2(M))"

Non-degenerate 2-form

A non-degenerate 2-form is a 2-form such that if w(X,Y) = 0 for every
Y € X(M) that means that X = 0.

Closed 2-form

A closed 2-form is a 2-form w that satisfies dw = 0 where d is the exterior
derivative:

d: QF(M) — Q¥(M)

Observation

If a 2-form is closed, by Poincare’s lemma, we have that locally there
exists a symplectic potential, i.e. w|y = df for every U C M.

Symplectic manifold

A symplectic manifold is a differentiable manifold M equipped with a
non-degenerate and closed 2-form w. We denote this manifold by (M,w) .

Examples of simplectic manifolds
2n dimensional euclidean space (M = T*(R") = R?")). This space

come with a natural 2-form w such that if (¢,p) € T*R" is such that ¢ =
(41,92, -, Gn)s 2 = (P1, P2, ---, Pn) € R™ then the sympectic form is given by

W:Zd%/\dpi



In this case is easy to verify the conditions of the symplectic manifold
because the wedge is billinear and antisymetric as well.

Cotangent space. A very important example of a simplectic manifold
is the cotangente space of a manifold ) where @) is any manifold. This is
particular important in this work because we are quantizating the cotangent
space of a configuration space () that is associate with a Hamiltonian system.
The 2-form is given similarity from the before example, we are considering
essentially the same 2-form.

2-Sphere (S?). If we consider S? like the set of vector in R? with norm
equal to one, we can define a bilinear, closed 2-form like

wy: T,8* x T,8* - R
given by wy,(u,v) = w,(p,u X v)
Interesting fact about symplectic manifolds

(1) Every symplectic manifold has even dimension. This is consequence
of the antisymmetry of the 2-form:

Let’s suppose that w: V' x V — R is a 2-form where V is a finite vector
space with base B = {vy,...,v,} and let (a;;) = (vj,v;) be a matrix repre-
senting w in the base B, then as w is anti-symmetric, we need to have that
(w]p = —[w]’ so det|w]p = det(—[w]i) = (—1)™ det|w]p and n = 2k for some
keN

Important observation

In order to define Geometric Quantization correctly, we need to use a con-
nection of the complex line bundle. So I will need to introduce the concept
of the complex line bundle and then the connection associate to this bundle,
which I am going to do now.

Complex line bundle

A complex line bundle over a manifold M is another manifold L together



with a surjective function 7 : L — M that satisfies the following conditions:

(i) For every a € M we have that 7~ *(a) is a complex vector space of
dimension one. (i.e. 77 *(a) = C for every a € M and so the fibers are lines)

(ii) m is locally trivial, that means that there exist a open covering
{U;} of M that such that the functions 7; : U; x C — 7 1(U;) given by
(m,z) + zs;(m) are diffeomorphism, where s; : U; — 7 1(U;) are called
unitary sections (we will define sections below).

Section of the complex line bundle

Sections of the complex line bundle are function s : M — L such that
mos = Id. In the previous definition s; are section and then they are func-
tions such the mo s; = Id.

The set of every sections of a manifold M associate with a complex line
bundle will be denoted by I'(M) and it turns out that I'(M) is an algebra.

Complex lines bundle doesn’t always exist for a given symplectic manifold,
we can see in "BAYKARA” and "CAROSO” that one necessary condition
to this particular vector bundle exist is that [2| € Hyr(M,Z) which is
equivalent to Weill’s integrability condition, that says that the complex line

bundle for a symplectic manifold there exist if

/wEZwZ
b

for every closed surface ¥ C M.
Connection

For a general vector bundle we can define a connection, in this particular
case that we have a complex line bundle, we are going to introduce a con-
nection of this vector bundle which will be key for the correct definition of
the prequantization function that satisfy the Dirac’s conditions (we will see
this condition in some moments).



A connection is a way to derivative field vector with respect to field vector
and is defined by a R— bi-linear function 7 : X(M) x ['(M) — I'(M) given
by (X, e) — 7xe that satisfies:

(i) vyxe=fwvxe

(i) vx(f-e)=fvxe+t X(f)-e

7 Prequantization

The idea of Prequantization is to associate a Hilbert space to one manifold,
that Hilbert space will have operators self ad-joints acting on the Hilbert
space. The idea is to pick one observable in the manifold and then to find an
operator self ad-joint in the correspondent Hilbert space, to do this we need
to consider the complex line bundle of the manifold and the Hilbert space
will be the sections of this complex line bundle.

We want to construct a function f — J?from classical observables to op-
erators in a Hilbert space (C*°(M) — H) that has a good behavior, that is,
being linear and respecting of Poisson bracket what was defined before, i.e,
our function needs to satisfy (Dirac’s conditions):

(1) f— f is R—linear.
(2) If f is a constant observable, then f = c¢I (where I is the identity
operator in the Hilbert space)

(3) If {f, g} = h, then [, f]

—ih ( —i appears here by convention)

There are several attempts to defined that function and we are going to
explore some of them until arrive to the correct one.

First attempt to define f — f
The first natural way of defining f — J? is by doing J? = —i Xy and

we can notice that this definition satisfies (2) but we can notice that it
doesn’t satisfy one of the condition we want to, the condition (1), because



c=—iX.=0#cl.
Second attempt to define f — ]/”\

Another way we can think works is by defining f = —i Xy + f. This
satisfy (1) condition but doesn’t satisfy (2).

Third attempt to define f — f

To do our third attempt we are going to suppose that w has a globally
symplectic potential, i.e, there exists 6 such that w = dfl. In this case then,

we define f = —iXy+ f —0(f).

We can check that this definition of f satisfies the properties that we
want, but the problem is the choice and the global existence of the sym-
plectic potential 6. To solve this, we need to introduce a connection of the
complex line bundle that was introduced briefly.

Correct way to define f — f

Let’s suppose that there exist a complex line bundle L — M and a con-
nection 7 : X(M) x I'(M) — I'(M) then it turns out that if we define
f:T(M) = D(M) like f = —i Vx; +[ for every observable f € C>*(M),
this definition satisfy the Dirac’s conditions and it doesn’t have the problems
of the potential symplectic as before, then this is the correct way to find a
Hilbert space (the space of the quadratic integrable sections with the Liou-
ville measure of the symplectic manifold).

This space will turn out to be not good enough and it will be necessary to
do some adjustment that we will see in the next sections. That’s way what
we did here it’s called prequntization because the Hilbert space obtained is
still incorrect, why? this Hilbert space consist of quadratic integral function
with respect to the Liouville measure of the symplectic manifold, that are
observables and then they depend of position and momentum, so we only
need function that depend of one of the variables but not both.



8 Two examples of prequantization

(1) If we take Q = R™ the configuration space and M = T*@Q = R?" the phase
space, we have then that w = d¢' A dp; and 6 = p;dg’, what means w = df
and w is globally exact so in this case we can define f = —i Xy +6(X;) + f.
(in this case we are taking the trivial complex line bundle L = M x C)

In this case prequantization is possible because (M, w) trivially satisfies
the condition of integrability because if S is a close surface of M then 9S =0

an so
/ w=0=27-0
as

Observation The above example applies for every symplectic manifold
with a global symplectic potential (in particular cotangent spaces), in this
case, we can conclude then that every symplectic manifold with a global
symplectic potential can be prequantizable and the way to to this is similar
to the above description.

(2) Now, consider M = S?, it’s clear that S? is not a cotangent space of a
configuration space, so we can’t use the before description. But in this case
the 2-sphere came equipped with a natural 2-form that is a volume and we

have
w = ssin(0)dl A do

Where s is the radio of the 2-sphere in sphere coordinates (6, ¢)

So we can corroborate that the integrability condition (Weill’s condition)
is satisfied and we can consider our Hilbert space as the quadratic-integrable
functions in S?, i.e. H(S?) and in this case our complex line bundle can be
taken of the following way:

We look at S? like CIP1, the space of complex lines across the origin of C?

and one consider L the space obtained by taking one line for every point in
CIP1, i.e, for each represent in CP1 we take a line and this is the space L
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9 Problems with Prequantization

1) We can’t always find a global symplectic potential 6 for every symplectic
manifold ( w = df). which is used to construct the precuantization function
f— J? describe above. For example, if the manifold is compact, such ¢
doesn’t exist. (if the symplectic manifold has the form of a cotangent space
then always exist a global symplectic potential)

2) Our definition of the function f — finvolve a choice of the symplectic
potential (the symplectic potential isn’t unique because if 6 is a symplectic
potential then 6+ du is also potential since ddu = 0). Then we need to ensure
that our definitions doesn’t depend of the choice of the symplectic potential.

3) The precuantization process generate a Hilbert space as it was showed
in the previous section but it turn out that the Hilbert space is not good
enough because is too big in the sense that has ad-joint operator without
much significant physic

4) We have dependence in position and momentum and we only want
dependence in position or momentum but not both because Hilbert space
consist of quantum operators of n variables (it will be achieve with polariza-
tion)

10 Solving the problems of prequantization:
Polarization

As we saw before, prequantization has problem that has to be solve in order
to have a correct quantization, to do that we need to introduce a polarization
because it will allows us to cut down the amount of variables of the operator,
so far, the operator constructed in the precuantization process were operators
in 2n variables but in practice, since the Hilbert space is the Hilbert space
of a quantum system, then the operator only need to depend on n variables,
it is described by another condition of the function f +— f , which is:

If {f;} is a complete set of observables then {f} is a complete set of wave
functions (operators in the Hilbert space)
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The before conditions restring of amount of variables that the wave func-
tions need to have and it makes necessary then to introduce the concept of
polarization and it will be that possible with a further correction.

Definition A polarization of a symplectic manifold (M, w) of dimension
2n is a n—dimensional sub-bundle P of the complex tangent space TMC,
(here TMC is the complexification of TM: TM ® C & TM & iTM) i.e
P C TMFC such that

(1) if X,Y € P then [X,Y] € P (P is a involutive distribution)
(2) w(X,Y) = 0 for every X,Y € P (P is a lagranian distribution or
isotropic).
(3) Dy = P, N P,NTM has a constant rank.

Observation One can consider real polarization but real polarization
doesn’t always exist, for instance, there isn’t a real polarization for the 2-
sphere since ....

Definition A polarization is called a Kalher polarization if P,N P, = {0}

Definition A polarization is called a integral polarization if for every
a € M there exists a neighborhood U C M and a sub-manifold N C M such
that P, =1T,M

Definition The set of maximal sub-manifolds N C M such that P, =
T.N is denoted by M/D

Observation Note that M/D is not always a manifold

Definition If P is a smooth manifold and P is a smooth function then a
polarization P is called reducible.

Definition A polarized section (function) with respect to the polariza-
tion P is a section s € I'(L) (observable f) such that Vxs =0 (Lx(f) =0)
for every X € P. Intuitively a polarized section is a section what is constant
in the fibers of the polarization. The set of polarized function form a ring
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Observation Polarized sections not always exists, here Im not entering
in detail of this fact because lam going to consider polarization where this
polarized section always exist as the case of kalher polarization and the ver-
tical polarization of M = T*R"

That we have constructed so far was a prehilbert space of the square in-
tegrable sections over the complex line bundle I'(L) and it turned out to be
too big.

Now we can consider several attempts to the correct Hilbert space, one
of them is the set of polarized, quadratic-integrable sections

{seT(L):Vxs=0,VX € P}

Which result to be a R module where P is the ring of polarized functions.
But in this case we need to define how to calculate integral over the polarized
section so, we need a form of volume. In the prequantum space we had P
but it doesn’t work in this case. There are recipes for every case, I mean,
different techniques to take the form volume and I will explore in detail the
form volume in the case where we have a kalher polarization since in this
case it will be more apparent.

To construct the Hilbert space is not enough, some adjust has to be done,
I will quantize only symplectic manifold where we don’t have so much prob-
lems. Some of the problems we need to solve are:

(1) Nothing guarantees that if s is polarized then Vxs is polarised where
X eP.

(2) Since we are dealing with a Hilbert space is then necessary to define a
inner product of two polarized section, so we can properly talk about square
integrable sections.

(3) To define inner product we need to integrate, but it will not possible to
integrate over the symplectic manifold M (over the natural form of volume
given by the symplectic manifold), we need to find a correct manifold to
integrate over.
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11 Example of Quantization

Bargmann-Fock Representation Let’s suppose we have a kalher polar-
ization over a sympletic manifold M with symplectic form w (This can be
the phase space of a configuration space, to be do it easier I'm going to do
that in this case) then, we know that w = d¢’ A dp; and we can consider

2 0 0,
021" 0% 7 04,

where z; = p; +i¢’. Consider the section s, given by

P={

n
™

se(a) = (a.0p(= Y 75%)) = exp( - ||21)si (@)

j=1

where s;(a) = (a,1),a € M
In this case

VxSe = 2mia(X)s,

where X = Xja%j and a = £ Y. Zdz;
and every section s has the form s = fs. where f € C*(M). After
analysis, we can notice that the Hilbert space is

H, = {f €OC)'| | 11 expl=rll=|[)dvol < oc}

with inner product

(f.9) = [ [gexp(—7]||z||*)dvol
(Cn
for f,g € H,

and it turns out to be the correct representation of the space M = T*R".
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